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The high-frequency magnetic susceptibility tensor of an antiferromagnet is calculated for 
various values of a constant magnetic field applied along the axis of the specimen. The 
calculation is based on the Landau-Lifshitz equation of motion for the sublattice moments. 

THE dispersion of the magnetic susceptibility of where Ms is the vector magnetization of the s-th 
an antiferromagnet is fundamentally related to ro- sublattice ( s = 1, 2); M is the magnitude of the 
tation of the magnetic moments of the sublattices magnetization of each of the sublattices and is as-
in the effective magnetic field (including the exter- sumed to be constant; g is the gyromagnetic ratio, 
nal magnetic field). The imaginary part of the mag- y a relaxation constant, and H~s) the effective field 
netic susceptibility has resonance characteristics; acting on the s-th sublattice: 
the resonance frequencies coincide with the natural 
frequencies of rotation of the system of moments. 
The resonance frequencies of an antiferromagnet 
were calculated for various equilibrium configura­
tions by Kittel m and by Turov. [2J The present au­
thors[3J calculated the high-frequency magnetic 
susceptibility of a uniaxial antiferromagnet in the 
absence of a constant magnetic field. 

We know[4J that a sufficiently strong constant 
magnetic field can change the equilibrium configu­
ration of the sublattice moments; this naturally 
produces a change in the nature of the dispersion. 
The subject of this article is the calculation of the 
high-frequency magnetic susceptibility of an anti­
ferromagnet for various equilibrium configurations 
of the moments. The results obtained make it pos­
sible to determine the equilibrium structures and 
the type of transition between them from high­
frequency measurements. 

We consider a uniaxial antiferromagnet with 
two sublattices, located in a constant and uniform 
magnetic field directed along the chosen axis, and 
also in a weak alternating magnetic field of fre­
quency w. For calculation of the magnetic sus­
ceptibility of the antiferromagnet, it is necessary 
to consider the forced motion of the magnetic mo­
ments of the sublattices under the influence of the 
alternating field. This motion is known to be de­
scribable by the Landau-Lifshitz equation 

(1) * 

*[M H] = M x H; (M H) = M · H. 

K is the energy density of the antiferromagnet, 
2/{ c= aM,iVL, - ~ }. [(M1n) 2 -+ (Mcn) 2 l 

(2) 

(3) 

Here a is the exchange interaction constant (a > 0), 
and A and 71 are anisotropy constants, which will be 
assumed to be positive.* Positiveness of the con­
stants A and 71 insures that in the absence of an 
external field, the magnetic moments will be di­
rected anti parallel and along the axis of the anti­
ferromagnet ( n is a unit vector along this axis). 

It is known [iJ that if a constant magnetic field of 
magnitude greater than H1 = .J(A+T])(2a-A+T])M 
is applied along the axis, then the energetically 
preferred magnetic state is one in which the vec­
tors M1 and M2 are oriented symmetrically with 
respect to the axis n, at an angle e such that 

cos 0 •• HIM (2a - A + rJ) . (4) 

The transition to the new ground state involves the 
surmounting of a potential barrier and is accompa­
nied by evolution of heat (a transition of the first 
kind). Under these circumstances, of course, there 
is a range of fields in which the antiparallel orien­
tation of moments is metastable. The upper limit 
of the metastable states is the field 

f/, f... -! TJ) .H 

*Since the anisotropy energy is related to relativistic in­
teractions, A and Tf « CJ.. 
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(the lability field). According to Eq. (4) the angle 
between the magnetic moments depends on the ap­
plied field when H > H2 and becomes zero when 

H = H 3 -~· (2a --- A + TJ) M. 

Subsequent increase of field does not change the 
structure of the magnetic state. At H = H3 there 
occurs a phase transition of the second kind: the 
longitudinal component Xzz of the magnetic sus­
ceptibility (the z axis is chosen along n) changes 
discontinuously from the value 2/ ( 2a -A + TJ) for 
H < H3 to zero for H =::: H3• * We remark that the 
components Xxx and Xyy of the magnetic suscep­
tibility are continuous at H = H3• 

On decrease of the field from values below H3, 

it is possible to carry over into the low-field re­
gion the configuration with a symmetrical orienta­
tion of the moments with respect to the axis. The 
lability field in this case is 

f/4 = [A (2a ~A + rJ) 2/(2a ·!-A + TJ)J'1• M. 

We note that H4 < H1• The difference H2 - H4 de­
termines the width of the hysteresis loop in the 
magnetization of the antiferromagnet. 

We shall derive an expression for the high-fre­
quency magnetic susceptibility tensor Xik ( w) for 
various values of the constant field H. The tensor 
Xik( w) is calculated by means of Eq. (1), linear­
ized with respect to the high-frequency field, at 
the equilibrium configurations considered above. 

1. H < H1• In this case, as is usual in gyro­
tropic media, it is convenient to describe the 
magnetic susceptibility by giving the values of 

x± in 

where h± = hx ± ihy, ID± = mx ± imy; h is the 
high-frequency magnetic field and m the alter­
nating part of the resultant magnetic moment. 
With the abbreviations 

~~2 = (g2 NP + y2) (A + TJ) (2a +A + TJ) -- y2H2/ M 2 , 

~i = 2 (g2.W + r 2) (A + rJ), (5) 

the expressions for the components of the tensor 
Xik can be written 

Xzz = 0. (6) 

From (6) it is evident that the role of antiferro­
magnetic resonance line width is played by the quan-

tity 2y (a + A + TJ). [3J At H = 0 the values of X+ 
and X- are equal: 

XT = X .·.- Xxx =- Xuf/" 

The off-diagonal components Xxy and Xyx are then 
zero. This means that at H = 0 there is no gyro­
tropy. [3J It should be mentioned that in reference 3 
a mistake was made, in consequence of which an 
incorrect frequency dependence of the imaginary 
part of Xxx was obtained.* 

2. H1 < H < H3. Because of the dependence of 
the angle between the magnetic moments upon the 
magnetic field, in this case Xzz .,r. 0. The calcula­
tions lead to the following result: 

., . 

X,z (w) = Xu (0) _:~-~~ : v .... -i- co~ 

(7) 

Xn (0) "= 2/(2a ~ A + TJ), 

" = (2u ~ ;. +TJ) r sin2 8 ·= y (1- H2/H;) H3/M. (8) 

Here the angle e is determined by formula (4). We 
notice that for w ""' 0 the value of Xzz approaches 
zero as H- H3, i.e., as e- 0. 

Formula (7) describes a behavior with relaxation 
time T = l/v in the neighborhood of the phase tran­
sition of the second kind (where H ::::J H3 ): 

l Mff, 
T = - ~---- (8') 

r H~- W 

The approach of the relaxation time to infinity at 
H = H3 is in accordance with a result of the gen­
eral theory of phase transitions of the second 
kind. [SJ 

We have assumed that the temperature of the 
body was fixed. If we take into account that all the 
parameters on which the tensor Xik depends are 
functions of temperature, then the equation H3 = H 
at fixed H must be regarded as an equation for 
determination of the temperature T c of the phase 
transition of the second kind. Then formula (8') 
determines the relaxation time r in the neighbor­
hood of Tc: 

T ,~ G - _u,2 !dl_l"l 
' -JVl! YiifT 

· 'T-r 
(8") 

c 

Formulas (7), (8), (8'), and (8") show that at 
fixed frequency there is a field or a temperature 
at which the absorption in a high-frequency mag­
netic field along the z axis reaches a maximum. 
The height and position of the maximum depend 
on the frequency w. The maximum always occurs 
in that phase in which the angle between the sub­
lattice moments is different from zero (this angle 

*Our attention was directed to this fact by E. A. Turov, to 

*Strictly, Xzz ~ 0 for H 2:. H3 • The value of Xzz is deter­
mined by the dependence of the energy of spin waves upon the 
magnetic field (the "paraprocess"). At T = 0, Xzz becomes 
zero. At any temperature below the Curie-Neel temperature, 
the value of Xzz takes a finite jump at H = H,. whom we are very grateful. 
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plays the role of the parameter TJ in the general 
theory[5]). The transverse components of the mag­
neitc susceptibility tensor in this case are 

wi ~ 2iulr 
Xu= . cos2 0. 

w~ ~ w2 ~ 2icxy'w 

1 w~~2iwr 
Xwu= ~· . 

· ex wZ,~ w2 ~2icxy'w · 

X ~ __ X ~ 2igMw cos 6 
xy- yx- 2 . 

lu0 ~ w2 ~ 2icxy'w 
(9) 

Here 

oo~ = (g2M 2 + y2) (4a2 cos2 e- 2 (A. + 11) a sin2 6), 

wi = 4a (g2M2 + y2), (10) 

y' = y [1 + cos2 e- -d--<1" + 11) sin2 flj. 
_::J. 

The x axis lies in the plane of the magnetic mo­
ments, the y axis perpendicular to this plane. 

In contrast to the preceding case ( H < H1), 

here there is a single resonance frequency w = w0• 

This is connected with the fact that we have not 
taken account of anisotropy in the basal plane (the 
xy plane). Calculation of the spin-wave spectrum 
in this case leads, it is known, [2J to the result that 
one of the frequencies of the spectrum goes to 
zero as the wave vector goes to zero. 

3. H > Ha. As was pointed out above, for H > H3 

the two magnetic moments in the equilibrium state 
are parallel to each other and are directed along 
the magnetic field (H II n). The high-frequency 
magnetic susceptibility tensor in this case coin­
cides with that of a uniaxial ferromagnet: 

• ( w2 ~ iwr 
Xxx oo) = Xyy (w) = Xl. (0) 2 f f 

wf~w2~2iwrr 

'/...xy (w) ~= - Xux (oo) = . 2igMw 
w~ ~ w2 ~ 2iwr f ' 

Comparison of formulas (11) and (12) with formulas 
(9) and (10) shows that at H = H3 = ( 2a- A. + TJ) M, 
all components of the tensor Xik ( w ) are continuous. 

Knowledge of the frequency dependence of the 
magnetic susceptibility tensor enables us to solve 
the problem of the dependence of the resonance 
frequency on the form of an ellipsoidal specimen, [6J 

and also to calculate the frequencies of nonuniform 
resonance. [7J Both problems reduce to the finding 
of the characteristic solutions of the system of 
equations* 

roth= 0, 

div h = {~ 41t div xh (inside the body) 
0 (outside the body) 

with zero boundary conditions at infinity and with 
the usual boundary conditions at the surface of the 
body (here the value x of the tensor at y = 0 is 
used). 

In closing, we take this opportunity to thank 
A. S. Borovik-Romanov for valuable comment. 
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where 
Xl (0) = 2M/(H +(A.- 11) M), 

oo~ = g2 [H +(A. -11) M)2 (1 + y2/g2M 2), 

Y r = y (HIM +A. - 11). (12) *rot = curl. 


