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Convergence of the expansions of the cosine dependence of the amplitude, employed in the 
deduction of the integral equations from the Mandelstam representation, is investigated in 
the case of 7T7r scattering. A system of equations for low energies in presented, in which 
rapid convergence of the expansion of the real part of the amplitude can be attained by a 
conformal mapping of the cosine plane. Since any power of the function employed contains 
an infinite number of partial waves, this approach should be especially convenient in cases 
when high number waves may be important. 

1. QUESTIONS OF CONVERGENCE 

MANY authors have recently investigated the 
derivation of a system of equations for elastic 
pion-pion scattering. [1- 3J A general feature of 
these investigations is that the singularities of 
the scattering amplitude are determined by means 
of the Mandelstam two-dimensional integral rep
resentation, [4- 61 which discloses explicitly the 
analytic properties of the amplitude and leads to 
various one-dimensional dispersion relations. 

Chew and Mandelstam [1J obtained dispersion 
relations for the partial waves. The imaginary 
part of the amplitude in the nonphysical region is 
obtained by analytic continuation from the physical 
region of the crossing reactions by expansion in 
Legendre polynomials. 

However, this continuation leads to principal 
difficulties [1, 3• 7J because the Legendre series does 
not converge in the region of the spectral functions 
and because, furthermore, it converges very slowly 
in a sufficiently large region near the boundary of 
the spectral function, so that high-order waves 
cannot be neglected. 

Hsien, Ho, and Zoellner[3J have proposed a dif
ferent approach, getting around these difficulties. 
They use dispersion relations for the forward (or 
backward) scattering only. The path of integration 
does not cross the regions of the spectral functions. 
The path of the left-hand integral coincides with 
the boundary of the physical region of the second 
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(or third) reactions, so that no analytic continua
tion is necessary. Only integrals over the posi
tive energies at cos2 e = 1 remain after the cross
ing transformation. 

To obtain expressions for the partial amplitudes, 
Hsien et al use, along with the dispersion relation 
for A, also its derivative* with respect to t (see 
also [BJ). If the isotopic spin I is 0 or 2, only even 
waves are present: 

(l even), (1) 

where 
1 

Ctn cc \(co:-.~ 8 -~I ( P1 (cos fJ) d cos 0, 
'o 

A"· 2 (Y. cosO) A"·"(v.cosU). 

Only the S wave is taken into account in [3J and 
the first two terms are retained on the right side 
of expansion (1). These expressions are substi
tuted into the unitarity condition only in the given 
approximation. Analogously, only the P wave is 
taken into account in the case of odd l. 

The series (1) converges not only for all ener
gies v < 3, where scattering only is possible, but 
also up to v = 4.8. Naturally, the rate of converg
ence of the series depends in this case on the dis
tance between the nearest singularity and the point 
cos 2 e = 1. This can be seen from the fact that uni
tarity necessitates knowledge of the amplitude in 

*t = -2v ( 1- cos 8) is the square of the momentum trans
fer, and s = 4 (v + 1) is the square of the total energy; both 
are given in units of 11 2 in the c.m.s. of the first reaction. 
We also use the symbol v = q2 Ill'· 1 
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the entire physical region 0 :s cos2 e :s 1. Since 
we continue the amplitude into the entire physical 
region using its values at the point cos2 e = 1 
only, the amplitude A can be represented only in 
the form of a series in powers of cos2 e -1, which 
has its own radius of convergence. With increas
ing v, the radius decreases and the convergence be
comes worse;[9J starting with Vmax = 4.8, the 
series in the right half of (1) diverges. From this 
point of view, we can say that the accuracy of the 
approximation made in [3l is small in the region 
v > Vmax/2. 

The system of integral equations for the am
plitude of the 1r1r scattering proposed in the pres
ent article differs from the system of Hsien et 
al [3l in two main points. First, to obtain a better 
approximation of the amplitude we use not the ex
pansion in powers of cos2 e - 1, but the expansion 

00 ) 1 a"A 
A"·" (v, cos? 0) = ~ · 1 (--7 "'-'" (cos~ fJ). 

11--::0 n: a~• z U!' :II 

l.C.1 \ cos~ n --= l = 0 · 

Here w ( cos2 e) is chosen to make the expansion 
converge as fast as possible. In other words, the 
function w ( cos2 e) is a conformal mapping (see 
[91 ) of the complex plane cos2 e, with the aid of 
which Vmax can be shifted as far as desired to
wards higher ene:r:gies. We can therefore conclude 
that our equations take into account the region v 
> 2 more accurately, because the corresponding 
expression for the partial wave 

Af' 2 = ~~o~ (~:~) w~o ~ w" (cos2 0) P1 (cos B) d cos fJ (2) 

( l even) converges for all energies. This may 
prove important in the case when the expected 
resonance occurs at v > 2. 

Second, our expansion in powers of w ( cos2 e), 
contains an infinite number of waves even in the 
first approximation, so that the contributions from 
the higher waves can be estimated. In order not 
to lose this advantage, we use everywhere expan
sion in powers of w only; the unitarity condition, 
in particular, is also expanded in wn, since a 
transition to partial waves would lead to the prob
lem of rearrangement of two infinite series, and 
thereby to loss of accuracy. 

As shown earlier[9l the series in wn converges 
most rapidly when w ( cos2 e) maps the cut cos 2 e 
plane on a unit circle. The cuts themselves are 
mapped on the boundary of this circle. Conse
quently, the expansion in powers of w converges 
in all the cut plane cos 2 e, particularly in the 
physical region 0 :s cos2 e :s 1. This optimal 
value of w is 

WM (cos2 0, v) = 1 + 2 V~2 - ( (J/12 - f 

- V~-=-::- cos26) I (1 - cos2 6), (3) 

where T ( v ) is the cosine of the nearest singularity. 
Since the function wM is rather complicated, we 

sometimes use for preliminary estimates and cal
culations that do not influence the final result the 
simpler function 

Wp (cos2 0, v) = (1 - cos2 B)/(a2 - cos2 B), 

(3') 

which maps the left half plane Re ( cos 2 e) < T2 on 
the unit circle. 

2. UNITARITY CONDITION 

As can be seen from (3) and (3'), the functions 
WM and wp contain contributions from all the par
tial waves. We therefore write the unitarity con
ditions not for the partial waves, but directly for 
the amplitude A ( v, cos e): 

Im A (v, cos B) 
~-2"+1 

1 v v \ ,. =- ~-1 \ A' (v, cos B1) A (v, cos Bz) d cos B1dqJ, 4:rt v 4- J 
0 -1 (4) 

cos Bz = cos 6 cos 61 - sin B sin 61 cos qJ. 

The amplitude A ( v, cos 8) is expanded in pow
ers of w: 

A0' 2 (v, cos 0) ~~ Ag·z (v) + A~·?(v) w + A~' 2 (v) w2 -T- . .. , 

AI (v, cos 0) = cos 0 (A~ (v) +A~ (v) w +A~ (v) w2 + ... ). 
(5) 

Differentiating (4) with respect to t = - 2v ( 1- cos e) 
and putting t = 0, we obtain* 

~- 00 

I 1 -. I v "' I* I I Im A (v, cesS= 1) = 4:rt V v + 1 LJ Am (v) An (v) Km.n (v), 
m,n=O 

(at lm/1) = -, ~.1 _i_l/ v ~ 1 ~ A~ (v) A{. (v) K~~~ (v), 
at 1=0 •ill (2v) Ill n-o 

' - (6) 

where 
2" +1 

K{,~~~ = ~ \' \ U nz (COS 01) wn (COS 02) d COS 81dqJ I 
a cosO'~ ..:1 cos 9=1 

for I= 0, 2, 

(7) 

*The dispersion integrals are written for t = const, and 
not for cos () = const. When t = 0 both formulations are equiv
alent, but the condition t = const is convenient because dif
ferentiation of the dispersion integrals with respect to t cor
responds to differentiation with respect to () with a single sub
traction. 
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In the present article we take into account in (6) 
only i = 0 and 1. Since WM is a rather compli
cated function, it is advantageous to evaluate the 
integrals ~i)n• defined by (7), with the aid of 
electronic computers. In the cases when explicit 
clo~ed expressions are necessary for the integrals 
~1,)n we must forego the optimum WM and substi
tute wp into (7). We then obtain for I= 0 or 2: 

Kio - K{,, -- 4:rt- 2:rra- 1 (a2 - I) In [(a --=f- 1)/(a- I) I, 

K{, - 2rm - 2 (3a2 - 1\ -- :rtu-1 (3a.2 L- 1) 

>< (a2 - 1) In [(a + 1)/(a- 1)1; 

: na-" (a2 l I) (a2 - . 1)2 In l(a -t- I) I (a -l)l (Sa) 

and for I= 1 

K.'"' cc -t:rr;J, 

K.'11 · K:o c_ -l:rt I :3 i -i.rt (rt2 - 1) 

-- 2:rt (a~- I) a In l(a + I) I (a- 1)], 

K:, - -1-:rtn 1 IO:rt (a2 - I) 

- na- 1 (u2 - 1) (5a2 - I) In [(a L 1) I (a- 1)1; 

K~·, -- 2:rt · ~ na-2 (u2 -- I) {15u2 -f I) 

-~:rta-3 (u2 - I) (15a4 + 1) In !(u + 1)/a--1)1. (Sb) 

3. INTEGRAL EQUATIONS 

We start from the dispersion relations for con
stant t: 

00 

. 11 (v, t) 1 ~\ Jv' r , --- --;-- Irn A (v .t) 
:t •' v - v 

where aiJ /2 denotes the matrix of the crossing 
transformation in isotopic space: 

(9) 

(10) 

aiJ is connected with O!IJ of [11 by the relations 
aiJ= (-1)I+JO!IJ· 

Restricting ourselves to two terms in the ex
pansion (5), we must differentiate (9) with respect 
to t and set t = 0. Using (6), we obtain integral 
equations (without subtraction) for A~( v) and 
Al(v): 

,f, - 1 f dv' 1;-v--- ~' AJ* J J 
-l LJ ;x!Jp,n• .\ 1-!·V-\-V' J1 v' + 1 LJ mAnKmn, 

hO m,n=O (11a) 

X> 

V ~ dV' l 1
1 I' I I' + :<2 -.-,- ,;~-. - ), AmAnKmn 

m v - v r v' (v' . :- l) "'-' 
~~ m,n=O 

• 00 1 
( 1 - v ~ dv' 1 1 . J* J J' 

+ l,:Y.JJs----:J 11 +- .-1=------_- "' AmA,Kmn - n -- v v l v' (v' + 1) LJ 
J==n n m,n=O 

The factor (ow/8 cos ll)lcos e= 1 is equal to 
-1/2 ( r 2 - 1) when w = wM and to - 1/ ( r 2 -1) 

when w = wp. 
As shown in Sec. 2, the subtraction has already 

been carried out in (llb). It is therefore sufficient 
to subtract only in (lla). Unlike [1J and, caJ where 
the subtraction is made at the points s = s = t = % 
and t = 0, s = s = 2, respectively, we choose for 
the subtraction point the threshold of the first re
action s = 4, s = t = 0. 

We introduce the following notation 

A0 (v ~~ 0, t • 0) - a0 , 

Both scattering lengths a 0 and a 2 are related by 

~) •) ' ., a- -. 
I 

1 \' tiv' (2 L; •"' II"K'' o- :; \ -:-;--------~ . .11m' n Trill 

"·'-, J! v' (\'' i I)'' 
n m.n=O 

I I ' 

,, ,.. I 1 ,, 2'A"K2 ) [- 3 LJ A,,A,Km,,- 5 LJ Am n mn · 
m,n 11 m,n-· o 

After subtraction, (lla) becomes 

/' I I AmAnKmn 

(12) 

4. ESTIMATE OF ACCURACY OF THE UNITAR
ITY CONDITION 

The rate of convergence of the expansion de
pends on the position of the nearest singularity of 
the amplitude A, i.e., on the distance from the line 
t = 4, which is the first of the lines t = const inter
secting (asymptotically) the regions of the spec
tral functions A13 and A23 • (In the complex-cosine 
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plane this corresponds to a cut beginning with T 00 

= 1 + 2/v.) However, according to the main prem
ises of the theory we can expect the influence of 
the far regions of the spectral functions to be neg
ligibly small at low energies. We can therefore 
assume for estimating purposes that the cut in t 
begins with the line t = 44/7, which crosses the 
boundary s = 16t/ ( t- 4) of the spectral function 
at the point v = 10 ( s = 44 ) . In the cosine plane, 
this corresponds to a branch point at T 10 = 1 
+ 22/7v. 

We give below estimates made at the threshold 
of the first inelastic process, i.e., v = 3, where 
T 00 and T 10 are respectively equal to %and 2.047. 
To estimate the upper limit of the errors, we 
choose as the "amplitude" the function 

the singularities of which are concentrated in the 
very start of the former cut. For a comparison 
of the convergence of the series in powers of w 
and cos 2 e - 1 we refer the reader to Table 1 of [ 9J. 

where several partial waves are calculated for I 
= 0 and 2 in both approximations. 

The errors in the unitarity conditions are caused 
by the fact that we restrict ourselves to the constant 
linear terms in the expansion of the amplitude in 
wn. For w we choose wp [see (3')] with T = 2.047. 
Accordingly, the integrals Kmn are determined by 
the formulas (8). 

In the case of even isotopic spin I, the errors in 
1 

the function .6 AfuAhKfu.n and of its derivative, 
m,n=o 

compared with their exact expressions (summation 
from 0 to oo), arerespectively-4.08and+33.2 
percent. Although the second of these errors seems 
large, the total error in (11) is small. This is 
brought about by the fact that (11b) contains along 
with 1:AfuA~K~n also terms with 1:AfuA~K!nn 
which are of much greater order of magnitude 
(when I = 0 or 2 ) . Therefore the error due to the 
derivative is only 0.67 percent. 

In the case when I = 1, both terms are of the 
same order of magnitude, but the errors of both 
are very small ( -1.74 and -1.046 percent, re
spectively). 

5. CONCLUSION 

The analyticity assumptions implied in the 
Mandelstam representation, together with the uni
tarity property of the S matrix, serve as a basis 
for derivation of integral equations for A. 

Naturally, such equations cannot be solved with
out making certain approximations such as the two
particle approximation in the unitarity condition, 
or the account of only several terms of the expan
sion of the amplitude in powers of the scattering
angle cosine. 

The Mandelstam representation is frequently 
used to obtain dispersion relations in one variable 
only (for example, the energy), and these are sim
pler in form than the two-dimensional relations. 
The dependence of A on another variable (the mo
mentum transfer or the cosine) is represented in 
series form. A series in Legendre polynomials 
can be used in principle, but it diverges in a large 
part of the nonphysical region. This circumstance 
was taken into account in [3J, but the approach pro
posed there calls for knowledge of one or several 
derivatives (anA/a cos en) for cos e = ± 1, in 
terms of which the partial waves are expressed. 
In other words, it is necessary to use in addition 
to the Legendre series the Taylor series, which 
in turn has its own convergence region. 

In the present article we have, in accordance 
with [3J, also expanded the dependence of A on the 
cosine in the vicinity of cos e = ± 1, but in powers 
of a definite function which has singularities pre
cisely where A has them. This causes, first, the 
amplitude to be expanded in a power series that 
converges in the most rapid manner (see [SJ, Ap
pendix 1). The errors due to the inclusion of the 
first two terms only, estimated in Sec. 4, confirm 
this result. Second, we have attained, albeit partly, 
symmetry in the analysis of the energy and of the 
momentum transfer. 

We are grateful to Prof. Chu Hun- Yuang for 
continuous interest in the work and for valuable 
remarks. We are also indebted to all the partici
pants of the Seminar given by Academician N. N. 
Bogolyubov for useful discussions. 

Note added in proof Gune 16, 1%1): Wolf and Zoellner 
advised us that they obtain good agreement with experiments 
on " decay, choosing a• = 0.3 and a 2 = 0.2. Their article will 
be published in JETP. 
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