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We have used a consistent microscopic description to evaluate the BI2( I+ 1 )2 term in the 
energy of a rotating system of particles, without taking pair correlations into account. The 
calculated coefficient B agrees qualitatively with the experimental value. 

IT is well known that in the regions 150 < A< 190 H = H 0 - MQ, (3) 

and A > 226 the atomic nuclei are deformed and 
possess rotational excitations along with single
particle and "vibrational" excitations. 

In that region, the energies EI of the rotational 
states are much smaller than the single-particle 
and vibrational excitation energies and have the 
simple form 

(1) 

where I is the spin of the nucleus, J the moment 
of inertia, and E0 a constant. Equation (1) corre
sponds to the energy of a rotating system calcu
lated up to terms of the order n2, where Q is the 
angular rotational velocity. 

It is of interest to study the corrections to the 
energy of the system of higher order in the rota
tional velocity. One usually obtains such correc
tions by considering phenomenologically the influ
ence of vibrations on the rotation. They are then 
of the form 

(2) 

where hwv is the average vibrational frequency in 
the nucleus. 

In deformed nuclei, however, the collective ex
citations with energies of 0. 7 -1.2 Mev can be 
called vibrational only under very special condi
tions, for they are not connected with the vibra
tions of the surface of the nucleus and are, appar
ently, bound states of two quasi-particles, as is 
the case in a spherical nucleus. There is thus no 
sufficient basis for applying Eq. (2) in this case. 

It is of interest to calculate the corrections to 
the rotational energy of the system, using a con
sistent microscopic description. To do this we 
consider particles moving in a self-consistent 
potential. We shall then neglect the residual in
teraction between the particles which leads to 
"pairing off." 

We can write the Hamiltonian of a rotating 
nucleus in the form 

where H is the Hamiltonian in a rotating coordi
nate system, M the angular momentum, and Q 

the angular velocity. 
To evaluate the energy of the system we need 

to know the density matrix which one can easily 
find from the Green function 

G(x I ,x2) c= - i <<Do! T'IJ (xl)'ll+(x2) I <Do> ' 

where T is the chronological operator, <I> 0 the 
ground state wave function, and 1/J and 1/J+ are 
annihilation and creation operators for the par
ticles. The equation for the Green's function is 
of the form 

In particular, it is for a rotating sy,stem of the 
form 

(4) 

If we consider MXQ to be a perturbation, we 
can easily find G in zeroth approximation. The 
component G~ ( w ) of the expansion of the function 
G in terms of the eigenfunctions of the Hamilto
nian H0 is of the form [1] 

(6) 

where E) .. are the eigenvalues of the Hamiltonian 
H0, and 

where Eo is the energy of the Fermi surface. 
In successive orders of perturbation theory the 

corrections to the Green function are of the form 

G~).' = G~H~).'GL 
G~).' = G~H~).,G~,H;,,1.'GL 

(7) 

(summation is understood to occur over repeated 
indices and H' = MXQ ) • 
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The density matrix is obtained from the relation 

C dw 
Pu: = .\ G"AJ.' 2ni ' (8) 

c 
where the contour C consists of the real axis and a 
semicircle in the upper half-plane. Once we know 
the density matrix we can easily evaluate the en
ergy of the system, using the formula 

E = Sp Hp = ~ HH'PA'),. 
H' 

In the expansion of the energy in terms of the 
perturbation, odd terms in fl vanish and we get 
from (9) 

(9) 

Using Eqs. (6), (7), and (8) we get after simple cal
culations 

(11) 

where 

Equation (11) gives a general expression for the 
corrections to the energy of the system arising 
from the rotation. The quantity E0 is the internal 
energy which is independent of the rotation. The 
term proportional to fl2 corresponds to the rota
tional energy of a rigid body, as we have not taken 
pair correlations into account. 

It has been shown by Migdal [2] that the first sum 
in (11) is equal to the moment of inertia of a rigid 
body. The term proportional to fl4 is the correc
tion we are looking for. To evaluate it we use a 
simple model of a deformed axially-symmetric 
oscillating nuclear potential 

U=_2_m[wz(xz_~_yz) I wzz2]. 
3 X I I Z 

Then the operl!tor _Mx = m (w}-w~)yz. The ma
trix element M~il.' is different from zero for the 
transitions nx = nx ± 1, ny = ny ± 1. In the semi
classical approximation all possible values of 
·x Mil..>-'• are the same. 

One sees easily that 

~ 1 f , '2 (nJ,- nJ:) _ ~If , '2 6 ( ) (12) 
L.JI u I (e _ 8 .) ~- L.JI n I E),, 
H' A "A "AI.' 

as long as I fu' 12 changes little in the interval 
(Ef1.-Ef1.'). 

By evaluating the sum over the intermediate 
states 11. 1 and fl.' one can then show that in the 
semiclassical approximation the first sum within 
the square brackets in (11) is equal to 

8~6 ~ [(M2)uJ2 6 (e~.), 
1 "A 

(13) 

where d 1 = wx- Wz = wof3, where w0 is the average 
oscillator frequency and {3 the deformation. 

One can show similarly that the second sum 
within the square brackets in (11) is equal to 

1 . 
- 6 ~ [(M2)1."AJ2 6 (eJ,). 
16d1 "A 

(14) 

One verifies easily by a direct calculation that 
in the same semiclassical approximation 

~ (M2)A,. (M2)n = (M4)H = 4 (M2)~,. (15) 
"A' 

Using Eqs. (13), (14), and (15) we get then 

£(4) =-~ ~ (M 4)AJ 6 (e,). (16) 
26d~ ), ' 

On the other hand, 

LJ (M4)n 6 (e,) = (w~- w;) ~ p (e0 , r) (yz) 4 dV, (17) 
l. 

where 

p (e0 , r) = ~ljJ~ (r) qJ, (r)6 (el.) 
), 

is the density of particles with energy E0. In the 
semiclassical approximation the particle density 
is 

p (eo, r) = 3mC V2m (eo - U), (18) 

where C is a constant. 
We express the sum (17) in terms of the mo

ment of inertia and the total level density at the 
Fermi surface p0( Eo) = J p ( E 0, r) dV, Evaluating 
the density and the moment of inertia, we get 

po = 3Cn2e~/wg, Jo = Cn2e~12wt (19) 

'V(M.4 ) "( _ 23 .33 • d~J~ 
L.J n u e,) - 5 • 

"A Po 
(20) 

Substituting Eq. (20) into (16), and taking into 
account that fl2 = I (I+ 1 )Jij we find 

9 J2 (! + 1)2 
40 J 2 d2 • Po o 1 

(21) 

The coefficient in front of I2 (I+ 1) 2 in the expan
sion of the energy of the system is usually denoted 
by B. Comparing the coefficient B obtained from 
Eq. (21) with Bv from (2), we get 
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(22) 

The energy of the "vibrational" levels in a de
formed nucleus is about 0.7-1 Mev, i.e., of the 
order of the energy required to break up a pair 
amounts to ~ E 0A -2/ 3• Since J 0 ~ A513 !E0, Po ~A/ E 0, 

and d 1 "' E 0A- 213, we have B/Bv"' A 213• 

The formula thus yields for the energy correc
tion arising from the coupling of the rotation to the 
single-particle motion an appreciably larger value 
than the phenomenological correction connected 
with the vibrations. Numerically, they turn out to 
be very close to one another. 

When the deformation decreases, B increases, 
as in this model B "' {r 2• A similar tendency is 
observed experimentally. The criterion for the 
applicability of perturbation theory is the condition 
f3 »A - 213• The theory developed here is thus ap
plicable in the region of stable deformations where 
{3 ,... A -1/3. 

Let us estimate the average numerical value of 
the coefficients B. For the rare-earth region 
h2/J0 ~ 13 kev, d = 2 Mev, and Po= 3A/2E0 ~ 7 
Mev- 1• It follows then from Eq. (21) that Btheor 
"' 2 x 10- 3 kev, while Bexp"' 10 x 10- 3 kev. For 
the region of the heavy elements h2/ J 0 = 7.4 kev, 
d = 1. 7 Mev, Po~ 10 Mev- 1, and Btheor"' 0.5 
x 10- 3 kev, Bexp"' 4 x 10- 3 kev. 

To obtain quantitative agreement between theory 
and experiment it is necessary to take into account 
the effects of pair correlation and for small defor
mation also the presence of collective excitations; 
this will be done in subsequent papers. 
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