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We consider the process where nuclei are electromagnetically excited by muons (radiation
less excitation) during the 2p-1s transition in a mesonic atom. The ratio of the probability 
that a y quantum is emitted by the muon to the probability of a radiationless excitation with 
subsequent decay of the nucleus through various nuclear channels is evaluated. 

1. INTRODUCTION 

ONE of the authors has shown earlier[!] that the 
transition of a muon from the 2p to the 1s state 
can in heavy mesonic atoms take place by a direct 
transfer of the whole of the energy of the transition 
to the nucleus. The probability for the excitation 
of the nucleus during this transition was evaluated 
assuming that pr nucl » 1 (case of overlapping 
nuclear levels) where p is the density of the nu
clear levels at an excitation energy equal to the 
energy of the transition, and r nucl is the average 
width of the nuclear levels at the same energy. 
One can in that limiting case interpret the process 
where the nucleus is excited as the inverse of the 
internal conversion effect. Such a process was 
called the effect of a radiationless excitation of 
the nucleus. The ratio of the probability Wnucl 
of a radiationless excitation of the nucleus to the 
probability Wy of the emission.of a y quantum 
could in that limiting case be written in the form 

(1) 

where rn.r. is the width of the radiationless exci
tation of the nucleus which is proportional to the 
photoexcitation cross section and r y is the width 
for the emission of a y quantum by a muon. 

There is also interest in the other limiting case 
when prnucl « 1 (case of non-overlapping levels). 
In that case the nucleus can disintegrate through 
one of the nuclear channels but the process of a 
reverse transfer of energy to the muon is also 
possible. This leads to the result that the yield 
of y quanta for that transition is larger in com
parison than the one given by Eq. (1) and that thus 
Wnucl/Wy in the case of non-overlapping levels 
must depend not only on r y and r n.r., but also 
on Prnucl· 

We compute in the present paper Wnucl /Wy 
for the case prnucl « 1 and arbitrary ratio of 
ry and rn.r. The case rn.r. » ry was consid-

ered earlier by us. [2] An estimate of r n.r. /r y 
for a number of elements [3] shows, however, that 
this quantity is of the order of unity. In the case 
of non-overlapping levels, the effect of the excita
tion of the nuclei by a muon is important only, if 
the width of the muon energy level is appreciably 
larger than the distance between nuclear levels. 
In heavy mesonic atoms such as thorium and 
uranium rn.r. ~ 1 kev, and 1/p is of the order of 
several electron volts so that the condition 

I' P n.r. I, (2) 

on which our calculation is based is satisfied with 
very good accuracy. 

We assume for the sake of simplicity in this 
paper that the transition of the muon from a more 
highly excited state into the 2p-state is not ac
companied by the effect of the radiationless exci
tation. This is a reasonable assumption, since 
transitions between higher states have less energy 
and thus also a smaller probability for a radiation
less excitation. On the other hand, such an assump
tion is not one of principle, since one can easily 
generalize the calculation to the case of a radiation
less excitation at any transition. 

2. ANALYSIS OF THE BOUND MUON-NUCLEUS 
SYSTEM 

The Hamiltonian of the muon-nucleus system 
is of the form 

H = Ho + V, (3a) 

Ho = Hnud- Tp -(1Jlo I~ I ri_: r
1
,_II1Jlo), (3b) 

l=l 

where Hnucl is the Hamiltonian of the nucleus, T J1 
the kinetic energy operator of the muon, and the 
third term in (3b) is the potential in which the muon 
in the mesonic atom moves (rJ1 is the muon coor
dinate, ri the proton coordinate, and the sum is 
taken over all protons), 1/Jo is the wave function of 
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the ground state of the nucleus. V is the dipole 
part of the operator 

z 2 I z 2 

<'Po I ~ I r ~ r I ~·o)- ~ I r ~ r I' 
i=l l p. i=l l lJ. 

(4) 

The eigenfunctions of the Hamiltonian H0 are 
clearly all possible products of wave functions 1/Ji 
of the nucleus with muon wave functions 'Pk· The 
wave functions of the total Hamiltonian H which 
satisfy the Schrodinger equation H1Jri\. = Ei\. 1¥i\. will 
be expanded in terms of the complete set of wave 
functions of the Hamiltonian H0: 

(5) 
i, k 

where the Ci\.;i,k are the expansion coefficients. 
Since r n.r. is much smaller than the distance 

between the muon levels, but much larger than the 
distance between the nuclear levels which corre
spond to the energy of excitation of the nucleus 
during the 2p-1s transition, one can for energies 
Ei\. of the system which are close to the energy Ep 
of the 2p-1s transition write the sum (5) in the 
form 

where cpp and 'Ps are the muon wave functions for 
the 2p and the 1s state, respectively; in the fol
lowing we shall for the sake of simplicity write 
Ci\.,p instead of Ci\.;o,2p and Ci\.,c instead of Ci\.;c,is· 
The other terms in (5) are negligibly small and can 
be omitted. 

Substituting (6) into the Schrodinger equation 
with the Hamiltonian H ·and using the normaliza
tion of the 1Jri\. we get the following set of equations 
for the coefficients Ci\. and the eigenvalues Ei\.: 

(7) 

(8) 

(9) 

where V c = ( 1/Jccp s I V 11/Jo'Pp) . Substituting (7) into 
(9) we get 

1 c~.. p 12 ={I+~ IVc 12 1 (E1. -Ec)2r1
• (10) 

c 

From (7) and (8) we find an equation for the eigen
values: 

From (10) we see that a characteristic interval 
for the sum over c is I Ei\.- Ec I ~ r n.r.. One may 
assume that I Vc 12 which is proportional to the 
cross section for the photoexcitation of the nu-

cleus [iJ is constant in an interval of "' r n.r. and 
that the levels Ec are distributed equidistantly 
with a density p = 1/D where i5 is the average 
distance between the levels of the nucleus at the 
given energy Ep. Taking this into account we find 

~ [I Vc 12/(EI.- Ec) J = Jt I Vc 12 P dg Jt pl1, (12) * 

where ~ is the distance from Ei\. to the nearest 
level Ec. The details of the calculations leading 
to (12) and (13) were given in [2J. 

Eliminating ~ from (12) and (13) we find a con
nection between the sums over c in (12) and (13) 

"'V I v c 12 -- 1 I 2 2 I v 14 _L ("' I v c 12 \ 2] 
.L.i(E~.-Ecl'--IVcl2lnp c , ,.L.iE).-Ec). 
c c 

(14) 

Substituting (14) into (10) and using (11) we find 

I c~.. p 12 = IVc l2/f(E1. -Ep)2 + n2 P2 \Vc 14 + IVdl. (15) 

Using the condition (2) we can neglect the last term 
in the denominator in (15) and find finally 

IC).,pl2 = (fn.r./2np) [(E).-Ep) 2 +(fn.r./2) 2 ]-I, (16) 

where rn.r. = 21r I Vc l2p · 
In the following we shall need to evaluate differ

ent sums over the levels Ei\. of the bound muon
nucleus system. To find the eigenvalues Ei\. it is 
in principle necessary to solve Eq. (11). However, 
condition (2) has as a consequence that the levels 
Ei\. are distributed nearly equidistantly up to terms 
of the order 1/ r n.r. « 1. Indeed, one gets easily 
from (11) the following expression fo'r the distance 
between two consecutive levels Ei\. and Ei\.': 

1 { :n: [ (E 1. - E · 2]} E).- EA.'=- I+ 2f-- I+ 4 _r __ P) . (17) 
p p ~~ ~~ 

The second term in (17) is small compared to unity. 

3. ACCOUNT OF THE DAMPING OF THE MUON
NUCLEON SYSTEM 

We neglect according to our scheme the dipole 
interaction between the muon and the nucleus in 
more highly excited muon states so that the wave 
function of the system is 1/Jo'Pexc• where 'Pexc is 
an arbitrary excited muon state from which it can 
make the transition to the 2p state. During the 
transition from 1/Jo'Pexc the level 1Jri\. of the muon
nucleus system is excited. The probability wi\. for 
the excitation of level i\. is proportional to the 
square of the matrix element for the transition, 
i.e., 

*ctg =cot. 
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where Hy is the interaction between the muon and 
the electromagnetic field which leads to this tran
sition. Taking the normalization I: wi\ = 1 into ac
count we get wi\ = I ci\,p 12• 

Without loss of generality we can assume that 
the Ci\,p are real. Since the probability of finding 
the system in the state i\ after the muon has made 
the transition from the higher state is equal to ctp 
the total wave function of the system at t = 0 must 
be written in the form 

'¥ lt=O = ~C)., p '¥), = ~ ct P'iVPP + ~C),, cCI., p '1\J,Qls = '1\loQlp-
A A A,c (18) 

The sum over i\, c in (18) vanishes because of the 
orthonormality of the coefficients Ci\. 

We consider now transitions from the state 'lli\ 
which are accompanied by the emission of a y 
quantum by the muon ( Hy is the interaction be
tween the muon and the electromagnetic field) and 
by the decay of the nucleus through different nu
clear channels (the neutron channel, nuclear quanta, 
fission). We do not know the explicit form of the 
interaction operator H~ucl corresponding to the 
nuclear processes, but only the square of the ma
trix element of this operator enters in the final 
result and is proportional to the nuclear width. 
We assume for the sake of simplicity that only 
one nuclear channel is open. If the decay of the 
excited nucleus proceeds independently through 
the different channels (decay of the compound 
nucleus ) we can replace in the final result the 
partial nuclear width by the total width. 

The wave function of the system when the nu
cleus is in its ground state, the muon in its ground 
state, and the y quantum emitted by the muon has 
an energy Ev is denoted by <I>v; the wave function 
of the system when the muon is in the ground state 
while the nucleus after decay and the decay prod
ucts of the nucleus have a total energy Ek is de
noted by <I>k· We can write the wave function >¥ 
of the Hamiltonian JC = H0 + V + Hy + H~ucl which 
satisfies the initial condition (18) in the form 

w = "V b (t) '¥ e-iE,t;r. -'-"-'b. (t) <l> e-tE,t r. 
~). ), J.L_;' v 

A 

_L ~ b (t) <l> e-iE,,t r. 
I LJ k k ' (19) 

k 

where bi\ ( 0) = Ci\,p• bv( 0) = bk( 0) = 0. Substi
tuting (19) into the Schrodinger equation we get an 
equation for the coefficients b, which we shall as
sume to be equal to zero for t < 0 (see, for in
stance, [4J ) : 

in bn (t) = ~ :1tnm /<En-Em) l/n bm (t) + ittb (t) ~ C/,p bn),, 

m ), (20) 

where n and m stand for all indices i\, v, and k. 
We Fourier-transform the coefficients b: 

+oo 
b = _ _!__ \ G (£) -i(E),-Elt!!i.d£ 

1' 2:rri j 1' e ' 
--00 

-1-oo 

b.,,"=- 2~i ·~ G,, k (E)\;(£- E", k) ei(Ev, k-E)t'n dE' (21) 
-00 

where 

\; (x) = lim [1/(x + ia)]. 
0:--+-!-0 

We are interested in the total probability Wy 
that the muon has emitted a y quantum; it is clearly 
equal to 

w y = ~ ! b, ( 00) 12, 

and similarly 

Wnucl= ~lbk(oo)\ 2 • 
k 

On the other hand[4J 

b, (oo) = G, (£) IE=E,, 

Substituting (21) into (20) we get equations for Gi\, 

Gv, and Gk: 

(£ -£~.) G1. = ~ Hi~l\; (£ -£") G" 

+ h H~~uct>\; (£ - Ek) G" -t- C'-P• 
k 

G 'I\1H(Y) G 
v = .L.i vA )., G _ ' ' H(nucl)G 

k- ..:::J kA A• (22) 
A A 

where 

H~~) =<'I\ I Hy I <I>")= CAp (Qlp I Hy IQls> == CApH", 

H~r;,.ucl)= ('¥1.1 Hnucl I <l>k) = 2.; CAC Nc I H nucl I <l>k) = ~ C),c Hck· 

We shall assume that Hv is independent of the 
energy Ev in an interval r y + r n.r.. This assump
tion is satisfied, since ry + rn.r. « Ep. Similarly, 
Hc,k is independent of Ek. Gv and Gk are then 
also independent of Ev and Ek and the indices v 
and k are merely indicators of the channel through 
which the muon-nucleus system has decayed. Using 
this assumption one can easily evaluate the sums 
over v and k in (22). Eliminating Gi\ we get a set 
of equations for Gk and Gv 

[ . ry "V c~p ] I. • CAP C/.cHckJ 
G" 1 -t- t -~- ..:::J E _ E -t- Gk lmHvPk ~ E _ E 

A A A, c A 

• c~p 
=Hv~E-EA' 

A 

(23) 
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where ril. = 27T I Hv I2Pv• r nucl = 27T I Hck I2Pk; Pv 
and Pk are respectively the densities of the final 
states v and k. 

When solving Eqs. (23) we meet with double sums 
over c; to evaluate them we assume that the phases 
of the matrix elements are random. We get then, 
for instance, 

I~ ci.cHck ( = 2;: c,,c !2 i Hck 12 =I Hck 1
2 2J i Cl.c [2 , 

c c c 

~ c~.cc;,c' Hck Hc'k = L} i Hck 1
2 c,.cCI:c =! Hck j2 (0u•- cl.pCI:p). 

cc' (24) 

Indeed, as 

the phase of this product is determined by the phase 

of the product of the matrix elements ( 1/Jo I V 11/Jc) 
( 1/Jo I Hnucll <I>k) . On the other hand, the number 
of effective terms in the sum over c is of the order 
prn.r. » 1 so that already a small change in phase 
from one level to the next of the order of ~cp 
~ 1/prn.r. « 1 reduces the sum of the cross 
terms to zero. In that approximation we get, using 
(24) 

· ~, I' c2 ._,_ r j -l 
l )' 'Y Ap 1 nucl 

+-y~ E-E~. ' 

We get thus for the probability that the muon
nucleus system decays through nuclear channels 

(26) 

We obtain for Wy a more complicated integral; we 
evaluate therefore only Wnucl and we find Wy from 
the normalization condition Wy = 1- Wnucl· 

One can evaluate the sums over A. occurring in 
(26), but the integrand we obtain then is too com
plicated for immediate integration. To evaluate 
(26) we break up the path of integration into sec
tions about each value E11. 0 as shown in Fig. 1. 

__ ..J E 
i 
i 

I 

FIG. 1 

The integrand in each such section is appreciably 
simpler than the general expression (26). After 
first evaluating the integral along this section as a 
function of E11.0 we sum then over all such sections. 

Using (16) we get* 

(27) 

Along the above-mentioned interval around E11. 0 we 
write (27) in the form 

cz (£1,,-Er) :-(£-1:1) '-'/,~~tg:-rr,u: ~!:·i,) _ 

l.,p 1 T 2:tpC~_,p [(£- E),y _,_ 2 ({:'- L))(L, ... - J:fl)] r.n.r. 

(28) 

The second term in the denominator of (28) is less 
than or of the order of magnitude of 1/prn.r. « 1. 
Neglecting that term compared to unity and intro
ducing for the sake of simplicity the notation 
x = EA. - Ep, y = E11.0 - Ep, we get 

r n.r. j ) -::i- c g JTpx, . (29) 

We similarly evaluate the other sums near E 
·= EA.o= 

"-' (£- E )-1 ,~= :n:o ctg:n:o" L! I. I I •• , 

I. 

~C~r/(£-£1.) 2 = :n:2 p2 C~,,r(l +ctg2:n:px). (30) 
), 

We take further into account that 2x/r n.r. x 
cot 1rpx « 1 in the above mentioned interval of 
integration everywhere except where x ~ ( 1/2p )x 
(1-2/7Tprn.r.), since the integrand in (26) is es
sentially positive and has its minimum value in 
the given interval for x = ± 1/2p; we can thus neg
lect x in (29). The error introduced then is of the 
order of 1/ pr n.r. « 1. Substituting (29) and (30) 
into (26), we perform the substitution ~ =tan rrpx 

and change from a sum over 11.0 to an integral 

E~ c 
t ~~ 2-~~-~ 

I' . 
n.r. 

(31) 

We have then 

*ctg =cot 
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+oo 

w = ~~~ucl~ 1\ dtds (t2 +I) 
nucl 2 ~~ J.J 

-00 

/ rr(l +t2_j _ _S_ :n:prnucl) s- _ __I2_~fnucl t}2 
X 1L I rn.r. 2 fn.r. 2 

1
- r :n:pr 

_ _1_ __ Y_(f't _1_ I)_, ____ nucl (/2-, r b I • 2 
n.r. 

(32) 

Using the theory of residues one can easily eval
uate the integrals in (32). We obtain finally 

, _ [ I f y 1 + (:rtpf,ucl/2)" _l_ (_1'-r_ ') 2 ]-'/z (33) 
Wn.r.- I -1 f-- Hpf /2 I r , 

n. r. nucll n. r. -

and for the ratio (1) 

w r 1 '- (:n:pr 12)" · r "j', 
y __ [1 +-'-' -~-~~_ __ + ~~r _I. (34) 

wnucl- . r n.r. :rtpl~ucl/ 2 n.r. -

When the condition 

fn.r. ~ fy/pfn.r. (35) 

is fulfilled we get from (34) 

(36) 

This result is the same as the result obtained in [21 

assuming r n.r. » r y· From the calculations given 
in the foregoing it follows that (35) is a more rigo
rous criterion for the validity of Eq. (36). 

The schematic behavior of the yield of y quanta 
from the muon 2p-1s transition as a function of 
pr nucl is given in Fig. 2. The behavior of the 
curve W y ( pr nucl ) for pr nucl ~ 1 is interpolated 
between the values given by (34) for pr nucl « 1 
and the value r y/(r y + r n.r.> for pr nucl » 1. 
It is clear from Fig. 2 that the y-quanta yield for 
pr nucl ~ 1 differs little from the case where the 
overlapping of the nuclear levels is complete, in 
agreement with reference 1. At very small prnucl 
the decrease in the y-quanta yield during the 2p-1s 
transition is proportional to ../ pr nucl · 

---- __ ::-:_:::-:::,_,.,_~---

f 

FIG. 2 

4. CONCLUSION 

Calc" ~ations recently performed [31 show that 
ry""' rn.r. for all nuclei in the region Th, U, and 
Pu. From (34) it is clear that for such a ratio of 
widths the dependence of the y-quanta yield on 
prnucl for one muon at rest is weak. For instance, 
when ry = rn.r. a change in 7lprnucl/2 from 0.1 
to 0.5 leads to an increase in Wy from 0.71 to 0.79. 
The dependence of Wy on prnucl can be more im
portant only in the case when rn.r. » ry/Prnucl· 

Experimental results obtained in reference 5 
show that W y depends weakly upon pr nucl· This 
result is in qualitative agreement with theory. A 
quantitative treatment of the experiments to find 
prnucl will be possible once Wy is measured more 
accurately for different nuclei. 

In conclusion the authors express their gratitude 
to B. M. Pontecorvo, M. Ya. Balats, L. G. Lands
berg, and L. N. Kondrat'ev for discussing the ex
perimental data. 
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