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Dispersion relations in which subtraction is transferred to points located at infinity are 
derived on the basis of Pomeranchuk's assumptions regarding the asymptotic behavior of 
the scattering amplitude. In this form, the dispersion relations are most convenient for 
estimating the asymptotic behavior of the amplitude on the basis of the experimental data 
on 7r±p scattering. A preliminary numerical estimate of the asymptotic behavior of the 
1r±p scattering amplitude is presented. The question whether the validity of the dispersion 
equations at high energies is consistent with the statistical theory is considered. 

PoMERANCHUK[iJ has shown that if the existence 
of an energy-independent limited radius of interac­
tion is assumed, the behavior of the complex scat­
tering amplitude of particles and antiparticles for 
an arbitrary scatterer at an angle 0° should be de­
scribed by a function which increases to infinity no 
faster than the first power of the energy. A conse­
quence of this is the equality of the limiting values 
of the total interaction cross sections for particles 
and antiparticles: 

::;;( oo) = ::;~(x ). (1) 

Experimental studies of the total cross sections 
of 1r±p interactions apparently confirm Pomeran­
chuk's conclusions that at high energies the cross 
sections for 1r+ and 1r- approach the same, almost 
constant value. 

In this connection, it is of interest to estimate, 
within the framework of these theoretical assump­
tions, the asymptotic value of the real part of the 
1r±p scattering amplitude on the basis of the latest 
data on the behavior of the total cross sections at 
high energies. For this, it will be convenient to 
start from symmetric and antisymmetric combi­
nations of the amplitudes D+(E) ± D_(E), where 
D± ( E ) are the real parts of the 1r±p scattering 
amplitudes at 0°. For such combinations at suffi­
ciently high energy E, according to Pomeranchuk's 
assumptions, the following relations should hold: 

C (£) =: [0+(£)- D_(£)] /2£ = Coc, 

T[D+(£) + D_(E)] = Q(E), 

where Q (E) is a function that increases more 
slowly than the first power of the energy, an C00 

is a constant. 

(2) 

(3) 

For an estimate of quantities (2) and (3), we 
should let the energy go to ihfinity in the disper­
sion relations. For this, it is convenient not to 
fix the energy at which the second subtraction is 
made. Since many values of D±( E) are now known 
with good accuracy over a rather large energy in­
terval, the method permits an essential increase in 
the accuracy of the determination of D±( oo) in com­
parison with calculations by means of the disper­
sion relations in Goldberger's form, in which the 
second subtraction is fixed at E = m ( m is the 
meson mass). We note that the transfer of the 
subtraction to infinity leads [together with condi­
tion (2)] to definite restrictions on the way the 
cross sections approach their limiting values. 

We shall start from the dispersion relations 
for the case of forward scattering of charged me­
sons in the form in which they were written by 
Bogolyubov, Medvedev, and Polivanov:r2J 

':' k' [cr + (£')- cr- (£')]dE' c (£) - c (£ ) = _1 (£2 - £2) p \ ~ ----,:-------'--;1 ,-::---:--
0 4n• 0 } (£ 2 _ £2) (£ 2 _ £2) 

m 0 

(4) 

r (£2 _ £2) 
' 2f2 0 (5) 

I (£2- r2) (Eg- r2) 

Here E 2 = m 2 + k2, r = m 2/2M, f2 = 0.08, M is the 
mass of the nucleon. 

Setting E 2 « E2 « E~, we can rewrite (4) in the 
form 
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1 ~ k' (0~ ~ d~) 
p (e) = C (E) - Ltn" P j £'" ~ E" 

m 

dE', (6) 

where p ( E) is obviously a function of E only. 
We now let E 0 go to infinity for any fixed value 

of E. According to (2), the function C ( E 0 ) should 
then go over into C 00 • Since p (E) is constant, the 
integral with E0 in (6) also should go over to a con­
stant as E0 - oo. The necessary condition for this 
is the existence of the integral* 

co 

~dE' (c;1"- c;()IE' =A (e). 
£ 

We then have the condition 

From (6) and (7) it follows that 

dE' 
m 

1 1 r k. ( (j; ~ (j~ ) 

+ 2/2. £" ~ r" = C (E) -;lit" P j £'" ~ £2 dE' 
m 

+2f2 1 
£2 2 =Coo. 
~r 

dE'. 
(7) 

(8) 

Formula (8) represents the dispersion relation 
for the difference in amplitudes in which the sub­
traction is transferred to points located at infinity. 
Setting C00 = 0 and E = m in (8), we arrive at the 
summation rule of Goldberger et al. [4J 

We do not know whether the function Q (E) re­
mains bounded as E - oo. The asymptotic behav­
ior of Q (E) is determined by how fast u; (E) 
+ ut (E) approaches the limiting value 2u 00 • If 
u[ decreases monotonically beginning at some 
energy, then it can be shown (see Appendix) that, 
for sufficiently large E, a necessary condition for 
the relation 

Q (E) = Qcc, (9) 

where Q00 is a bounded quantity, is the existence 
of the integral 

00 

~ [ a7 (E) +a/ (E')- 2acol dE'= B (e) < x, (10) 

This means that the difference u; + ut - 2u 00 should, 
under condition (9), tend to zero as E- oo faster, 
on the average, than ( E In E) - 1• At present, how­
ever, we cannot give definite theoretical arguments 

*The condition under which (2) is fulfilled was obtained 
earlier by Amati, Fierz, and Glaser. 3 

in favor of assumptions (9) or (10), *and the trans­
ferring of the substraction points ± E 0 to infinity 
in relation (5) does not lead to definite results. 

Nevertheless, to investigate the behavior of 
Q (E) at high energies, it is useful to introduce the 
function q (E), which is determined by experimen­
tally measured quantities: 

E ' ' + ~ 
J ( E k (:it + (jl) I 

q (e) = Q (E) -- 11 1t2 P .\ £'" ~ E' dE 
m 

-'- 4~2 [Ci7(e) +c;/(e)J +2/2 pr_,2 , 

e2 ~ £2. 

(11) 

In the Appendix, it is &hown that q (E) has the fol­
lowing properties: 1) it does not depend on E under 
the condition that E2 » E 2; 2) if (9) and (10) are ful­
filled, then lim q (E) = Q00 as E - oo ; 3) if (9) and 
(10) are not fulfilled, then the absolute value of 
q (E) increases without limit as E increases. 

COMPARISON WITH EXPERIMENT 

Experimental information concerning u[ and 
D± ( E ) is available only up to a certain energy. 
For a number of reasons, the energy E to which 
information on u[ is available is considerably 
higher than the energy E to which D±( E) is 
known. This is in accord with the conditions of 
separation E2 » E 2• Hence, for comparison with 
experiment it is convenient to separate out of (8), 
along with C00 , that part of the integral in the 
limits between E and oo for which u[ is not known 
at present. 

Adding and subtracting (6) and (11), we arrive 
at a system of two equations valid for E 2 « E2: 

q (e) ± Ep (e) = D± (E) 

m 

+ 4~2 [a; (e) +a( (e)] ± ,;~, 

where 
co + -

1 \' (jl ~ (jl 
P (e) = Coo + 4n2 .\ E' 

dE' 

(12) 

dE'. (13) 

If, in fixing E, we subtract from the experimen­
tal data on D±( E) and u[ the right-hand part of 
(12) and plot the result as a function of E, we con­
sequently obtain a straight line whose parameters 
determine q (E) and p (E). From (12) it follows 
that any error in the information on the total cross 

*For this reason, the conclusions on the behavior of the 
cross sections made by Lomsadze, Lend'el and Ernst' on the 
basis of assumption (9) cannot be considered well-founded. 
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sections at energies much higher than E does not 
disturb the linear dependence of the right-hand 
part of (12) on E, but changes the values of q (E) 
and p (E) by the quantities 6q (E) and 6p (E): 

(14) 

Therefore the errors in the cross sections at high 
energies have a far greater effect on the determi­
nation of q ( E ) than on p ( E ) . 

To determine the parameters p ( E ) and q ( E), 
we used the experimental data[6- 91 on the values 
of D±(E). In the calculations, we used the values 
of D ± ( E ) in the laboratory system. For the cal­
culation of the integrals in the right-hand part of 
(12), we took all the values for u[ up to 5.2 Bev 
published by the middle of 1960, except for the 
data of Devlin et al, [101 since they are in poor 
agreement with the results of the measurements 
of other authors in this energy interval. W- 131 

The energy interval in which the total cross 
sections are known were divided into 14 subinter­
vals for uf and 13 subintervals for u{. In each 
subinterval, the cross section was approximated 
by a quadratic parabola by the method of least 
squares. The values of the right-hand part of (12) 
as a function of E are shown in the figure in units 
of 10- 13 em. 

The parameters of the line for E = 5.2 Bev de­
termined by the method of least squares are: 

p (e) = (- 0.069 ± 0.03) ·10-13 cm/Bev, 

q (e)= (- 0.395 ± 0.01) ·10-13 em. 

In the calculation, we took f2 = 0.08. 
Data on D± ( m ) , shown in the dotted circles 

in the figure, were not included in the calculation 
of p ( E ) and q ( E ) , since they were calculated 
from the experimental results used for the deter­
mination of D±(E) at low energies, and have al­
ready been included in the calculations. The er­
rors given for p (E) and q (E) were determined 
by the statistical errors in D± ( E ) and do not 
take into account uncertainties connected with the 
experimental data on the total cross sections and 
the approximation of the cross sections, or the 
uncertainty in f2• 

The parameter q (E), because of (14), is very 
sensitive to the behavior of the cross section in 
the high-energy region, and since the behavior of 
ut in the energy interval 1. 9-4.15 Bev is not 
known, the actual error in the value of q (E) can 
be several times the value cited. Therefore we 

refrain from analyzing the variation of q ( E ) with 
energy. 

~~ ~~ 

bl/-tJ -1fio--J;u-:;~u-ioo-,,.::oo-o:----+---,""'o7o -2""'o:-co_Jc--'·o-:co +-~.:-c,o::oo----:->!Joo 

-0.2 

-{J.~ 

-0,{; 

-0.8 

Values of the right-hand part of (12) for E = 5.2 Bev based 
on the following data for D±(E): •- reference 6; •- reference 
7; X- reference 8; 0- reference 9. The parameters of the line 
q(E) ± Ep(E) are: q = ( -0.395 ± 0.010) x 10-13 em, p = ( -0.069 
± 0.030) x 10-13 cm/Bev. The curves represent the right-hand 
part of expression (12) after subtraction of the term D±(E). 

It should be stressed that, although the quantity 
p (E) is not very sensitive [as follows from (14)) 
to the measurement errors and the approximation 
of the total cross sections in the high-energy re­
gion, an error in the approximation in the low­
energy region can lead to a shift in the calculated 
points, and consequently, to important errors in 
p ( E). This is connected with the fact that the 
magnitudes of the principal values of the integrals 
in (12) are very sensitive to the behavior of the 
cross section in the region of resonances, and the 
contribution of the integral terms is very large. 
(The right-hand part of expression (12), after sub­
traction of the term D± ( E ) , is shown in the figure 
as a solid line.) 

The only objective criterion for errors of this 
kind in the estimate of p ( E) is the degree to which 
the data shown in the figure are consistent with a 
linear dependence. In our case, the degree of 
agreement is characterized by the value x2 = 26.3 
for 21 degrees of freedom, which corresponds to 
P ( x2) = 15.5%. In this connection, we note the 
following. It can be shown that a linear depend­
ence of the right-hand part of (12) on E is equiv­
alent to a linear dependence of the right-hand part 
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of Schnitzer and Salzman's[14J formula ( 1±) on 
the energy. * 

Hence, experimental confirmation of a linear 
dependence of (12) reflects the validity of the dis­
persion relations in the form given by Goldberger 
et al. [4] Moreover, a check of these dispersion re­
lations, particularly that by Zinov et al. [15] leads 
to excellent agreement with experiment. We there­
fore believe that more accurate values of p (E) 

can be obtained on the basis of recent experimen­
tal data after a more correct approximation of the 
total cross sections by means of resonance curves, 
as was done, for example in [15J and [lSJ 

In conclusion, we note that the method by which 
we determined the parameters p ( E) and q ( E ) is 
of full statistical value since it permits the utiliza­
tion of all the experimental data concerning D± ( E ) . 
The statistical error in the value of p (E) in the 
determination of the latter by D±(m) only, i.e., 
by means of the formulas of Goldberger et al [4J 

[in this case, the straight line in the figure passes 
only through the points D± ( m)] is five times the 
statistical error obtained in this work. Another 
important advantage of the method is the fact that 
uncertainty in f2 has comparatively little effect, 
since the contribution of the term with f2 to (12) 
decreases with the energy as (m/E )2• 

DISCUSSION 

From the principle of isotopic invariance, it 
follows that the charge-exchange cross section at 
oo is[17J 

(15) 

If the statistical view is correct, then, as E - oo , 

the total cross section for charge-exchang_e (a ex )t 
should drop very rapidly to zero (as e-v'E). This 
means that the right-hand part of (15) tends to 
zero as E - oo , and, consequently, t 

(16) 

We have estimated p (E) for E = 590 and 930 

p (590Mev) = -0.29·10--13, p (930Mev) = -0.17·10--13 , 

p (5.2 Bev) = -0.069 ·10--13 • 

Hence, the absolute value of p (E) decreases 
rapidly. The value of (a ex )t corresponding to p 
( 5.2 Bev) estimated by means of (15) is "'2 x 10-29 

cm2• Shalamov and Shebanov[19] obtained the value 
( 0.2 ± 0.25) x 10-27 cm 2 at 2.8 Bev. All this is in 
good agreement with the statistical view. 

In view of this and also in view of the already­
mentioned unce~tainties in p (E) connected with 
the approximation of the cross sections, we do not 
believe that the statistically significant deviation 
of our value of p ( 5.2 Bev) from zero definitely 
contradicts condition (16), even though in the es­
timate of p ( 5.2 Bev) it was assumed that a; 
= af at E = 5.2 Bev. 

It is of interest to estimate, starting from the 
relation 

co 
1 \" 

fi (5. 2 Bev) = Coo + 4:rt, .\ 

5.2Be' 

= 0.069 ·10--13 cm/Bev, 

:ot -:;;_dE' 
E' 

(17) 

how the cross s¢ctions should behave at E > 5.2 
Bev under the a$sumption that C 00 = 0. It follows 
from (17) that the difference af -at should be 
"'2 x 10- 27 cm 2 for E > 5.2 Bev in the energy re­
gion of "' 50 Bev. 

The absence of information on the behavior of 
the cross section af in the 1.9-4.15 Bev region 
can also lead to •a deviation of p ( 5.2. Bev) from 
zero. We obtain the value p ( 5.2 Bev) = 0 if it is 
assumed that af has a maximum of area"' 8 Bev­
mb in the region 1. 9 - 4.15 Bev, while we obtain 
at= af for E ~. 5.2 Bev. 

From the above, it is clear that a more accu­
rate estimate of the value of p (E) is important. 

We express our deep gratitude to E. M. Landis 
for investigating the passing to the limit in ex­
pressions (5) anti (6) and I. Ya. Pomeranchuk for 
constant interes~ in this work and for helpful dis­
cussions, and also I. M. Shmushkevich for his 

Mev, corresponding to the intergration up to the second critical remarks· 
and third maxima in at and obtained the following 
values (in units of cm/Bev): 

*This statement means that, although the parameters of a 
straight line in formula (1 ±) of reference 14 and formulas (12) 
of the present work are quite different quantities [C(m) and 
Q(m) in reference 14 and p(E) and q(E) in the present work], 
the same errors in the total cross sections and the values of 
D± (E) lead in both cases to the same deviation of the calcu­
lated points from a straight line. 

t Amati, Fierz, and Glasser' maintain that it follows from 
assumption (2) that Coo = 0. However, they did not actually 
prove this statement (in this connection, see Che~'s article). 18 

APPENDIX 

E. M. Landis has shown that if, as x- oo, the 
function f (x) tends to zero, so that, beginning with 
some value of x~ it is positive and monotonic, then 
the following eqt,lality holds: 

co X 
. N 2 ~ f (x) dx 

hm I 2-N' = 1, 
N--+oo N X 

lv= ~ f(x) dx. (A.1) 
0 

Here, by lim: we understand the low side of the 
limits over all possible sequences of N which go 
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to infinity. If, in particular, the limit of the nu­
merator in (A.1) exists and is equal to A, then 
the integral 100 exists and is equal to - A. 

To elucidate the properties of the function 
q (E) given in (11) and Q ( E0) of the form (9) and 
(10), we set in (5) 

(A.2) 

Then (5) can be represented in the form 

Q (E) 

If (A.2) is fulfilled, then (A.3) is fulfilled for any 
arbitrary values of E and E0, from which it fol­
lows that q ( E) is independent of E in (11). 

We shall now show the validity of (9) and (10). 
Using the auxiliary identity valid for E2 « E~, 

E - p r E~dE' (A.4) 
.l E·~ -- E~ . 
s 

we can represent Q ( E 0 ) in (A.3) in the form 

1 ~'f(E,)E~dE' f . 

Q (Eo) =' b' P ; --;:;2 _ E~ -- 'li?- f (e) + q (e). (A.5) 

where f (x) = u[(x) + ut(x) - 2CT 00 • If we allow E0 

to go to infinity in (A.5), we then have, owing to 
(A.1), 

Q (Eo) bound from above fx < xo, 

Q (E 11 ) x for ! 00 -'= x, 

i.e., we obtain (9) and (10). 
Using (A.5) and (A.4), we can also_investigate 

the behavior of q (E) as E - oo. If Q00 is the 
upper limit of Q00 , then from (A. 5) and (A.1) we 
find 

lim q (e) = lim I Qo, _:_lim ( 
::: -•;x ~--•:x: I 1·:,,--·::::o 

;~;, f (E) I = sli'~ ( Qm- ;;k ~ f (£') dE' 
s 

~~2 f (E)) i== Q00 , 

since lim d (E) = 0 as E - oo. If conditions (9) 
and (10) are not fulfilled, then q (E) - oo, when 
E - oo, since the integral in the left-hand part of 
(A.3) diverges. 

In conclusion, we give the dispersion relation 
for Q (E) with the subtracted points transferred 
to infinity. This relation holds when (9) and (10) 
are fulfilled: 

' 2f r • --r- £2- r2 • 

for E 2: E1 we have u[ = CT 00 • 

Note added in proof (June 9, 1961): We recently calculated 
p (E) with the aid of the data of Klepikov et al16 in which the 
total cross sections were approximated by resonance curves. 
The new result is p (5.2 Bev) = -0.085 ± 0.03 cm/Bev. On 
the other hand, according to data obtained at the Joint Insti­
tute for Nuclear Research and kindly communicated to us by 
A. L. Lyubimov, at for 77-p has no maximum in the 2-7 Bev 
energy region. Hence our result can signify the existence of 
the difference at- ut in a broad energy interval of over 
5 Bev if Coo is not different from zero. 
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