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A peculiar type of diffraction effect due to resonance accumulation of waves inside a lamellar 
system is observed when the waves are incident at an oblique angle on a finite laminar system. 
The main properties of this effect are elucidated and a characteristic length is derived which 
defines the distance along the layers from the boundary for which the effect can be observed. 

RESONANCE phenomena can arise in wave prop­
agation in inhomogeneous lamellar media. This 
takes place if the waves encounter two or more 
low-transmission, non-absorbing layers en route; 
these play the role of barriers, in the region be­
tween which standing waves can form. At reso­
nance, the standing-wave amplitude between the 
barriers increases many times in comparison 
with the incident wave amplitude. Simultaneously, 
the transmission of the barriers for the incident 
wave can increase sharply. The quantum-mechan­
ical phenomenon of the analogous process in non­
planar systems is the resonance transmission of 
de Broglie waves through a system of two poten­
tial barriers ( Ramsauer effect) and also the 
resonance penetration of waves through a bar­
rier according to Breit-Wigner. 

These resonance phenomena in lamellar media 
are frequently encountered in practice: in acous­
tics, in wave propagation in a plasma, particularly 
in the ionosphere, in optical systems of the type 
of interference filters, Fabry-Perot etalons, etc. 
Many researches have been devoted to the analy­
sis of resonance effects of this type (see, for ex­
ample, reference 1). As a rule, the calculations 
here are carried out for infinite systems. 
The basis for this is the fact that in practice the 
dimensions of the systems are many orders of 
magnitude greater than the wavelength. Therefore, 
it is assumed that the diffraction effects from the 
boundaries of real systems are always small cor­
rections which can safely be neglected. 

The latter is not true, generally speaking; that 
is, the fact that the system is very large in com­
parison with the wavelength is not sufficient that 
the asymptotic theory of an infinite system can 
be used as a valid first approximation. In particu­
lar, a peculiar resonance diffraction effect takes 
place for oblique incidence of waves on a lamellar 
system. This process can propagate along the 

-

stratified system for many orders of wavelengths 
from its boundary. In this connection, a charac­
teristic length of resonance diffraction Z0 appears 
and can be many orders larger than the wavelength. 
Only when the dimensions of the system are large 
in comparison with the characteristic resonance 
diffraction length Z0, and not with the wavelength, 
can one use the asymptotic theory of an infinite 
system as a first approximation. 

The lack of understanding of this process, and 
the invalid application of the asymptotic theory in 
a number of cases, have already led to a radical 
disparity between theory and experiment as, for 
example, in total reflection filters. 2 

Until recently, mistaken attempts have been 
made to attribute these disparities to all sorts of 
imperfections of the system, inasmuch as the phe­
nomenon of resonance diffraction has never been 
described or calculated up to now. Recently, a 
calculation of electromagnetic wave transmission 
through finite lamellar dielectric systems was 
carried out by the author. 3 It was established that 
the diffraction effects begin to play an important 
role at resonance. It was shown in the same place, 
in particular, that just these effects produce a 
sharp decrease in the transmission of total reflec­
tion filters. A complete calculation of the trans­
mission coefficient of the finite total internal re­
flection filter is in excellent agreement with ex­
perimental data. Thus, the special case of the 
resonance diffraction effect was considered for 
the first time. 3 

The purpose of the present research was to 
formulate the basic general laws of resonance 
diffraction. It seems to us that this is of interest, 
since resonance diffraction is a rather general 
phenomenon which can arise for waves any 
nature obliquely propagating through lamellar 
media. To reduce the amount of calculation, we 
considered the case of scalar wave propagation 
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in the simplest semi-infinite resonant system. 
The results obtained can be written down in very 
simple form, which contains nothing that is spe­
cific to the nature of the waves and to the charac­
ter of the actual resonant system. These results 
admit immediate generalization and make it pos­
sible to formulate the general laws of resonance 
diffraction. 

We write down the scalar wave equation 

L'..cp- (njc)2 ~ = 0. (1) 

Here cp ( r, t) is the scalar wave function of the co­
ordinates and time, n is a material constant of the 
medium (index of refraction), and c is the char­
acteristic velocity. We consider the case of a 
harmonic time dependence cp ( r, t) = cp ( r) eiwt. In 
this case, we have from (1) 

(2) 

where k2 = (nw/c )2• 

We assume that the plant! z = 0 separates media 
with different material constants. We require that 
the following boundary conditions be satisfied at 
the separation boundary: 

(3) 

The equations (1)- (3) just considered can be used 
for the description of various wave processes. In 
particular, they describe the propagation of longi­
tudinal sound waves in an elastic medium of con­
stant density. In this case, cp is the velocity po­
tential of the medium and c/n is the velocity of 
the sound waves. The same equations describe 
electromagnetic wave propagation in a nonmag­
netic dielectric in the case in which the electric 
vector lies in the plane of separation of the two 
dielectrics. Here cp is the only nonvanishing 
component of the vector potential of the wave, c 
is the velocity of light in vacuum, and n is the 
index of refraction of the medium. 

We take the plane of incidence of the waves on 
the boundary separating the media as the xz plane. 
We assume that the layered system is semi-infi­
nite and fills the half-space x > 0. Consequently, 
the desired solution of the wave equation in the 
region x < 0 must be identically equal to zero. 
It is obvious that individual plane monochromatic 
waves are insufficient for the solution of the given 
diffraction problem. Below, we shall give the ap­
proximate solutions of the wave equation (1) ob­
tained previously, 3 with the help of which one can 
solve our boundary problem. 

We assume that total internal reflection takes 
place in the incidence of waves from medium I, 

which is located in the region z < 0, on medium II, 
located in the region z > 0. In medium I we shall 
have a wave consisting of a combination of de­
formed incident and reflected pla.1e homogeneous 
waves: 

cp (r, t) = {A ( x- :: z) exp [- i (kxx + kzz)l 

+ B ( x + :: z) exp [- i (kxx - kzz))} e "'1. (4) 

In medium II, we shall have a wave consisting of a 
combination of deformed inhomogeneous waves 
which grow and decay along the z axis: 

cp (r, t) = {F (x +<: z) exp [- i (kxx + iqzz)l 

+G(x-ikx z) exp (-i(kxx-iqzz)l}eiwt. (5) 
, qz 

Here A, B, F, G are certain complex functions of 
their arguments: 

kx = (nw/c) sin a, k~ + k; = (nw/c)2, 

(6) 

where w is the circular frequency of the waves, 
c the characteristic velocity, a the angle of inci­
dence of the waves from medium I on the plane of 
separation z = 0, n and n1 the index of refraction 
of medium I and medium II, respectively. It is as­
sumed that the angle of incidence is sufficiently 
large that the condition for total reflection is sat­
isfied; i.e., sin a =:: n1 /n. 

Generally speaking, Eqs. (4) and (5) are not 
exact solutions of the wave equation (1) for arbi­
trary form of the amplitude functions A, B, F, 
and G. They are exact solutions of (1) in the spe­
cial case when these amplitudes are constant or 
are linear functions of their arguments. However, 
(4) and (5) are approximate solutions of (1), with 
accuracy up to first derivatives for arbitrary am­
plitudes A, B, F, and G, if these amplitudes are 
sufficiently slowly changing functions of their ar­
guments. The condition "sufficiently slowly" in 
the given case means the smallness of the change 
of amplitudes over a distance of the order of a 
wavelength: I BA/Bx I « I kxA I. I BA/Bz I « I kzA I, 
etc. In practice, for the resonance diffraction phe­
nomenon of interest to us, this condition of slow­
ness of change of the amplitudes is always satis­
fied by a wide margin, and the Eqs. (4) and (5) can 
be taken practically as exact solutions. We shall 
call the waves (4) and (5) "orthogonal," which re­
flects the fact that the planes where the phases and 
amplitudes are constant, are mutually orthogonal. 

Substituting (4) and (5) in (3), we get a differen­
tial relation connecting the amplitudes of the waves 
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(4) and (5) in the plane of separation z = 0. These 
equations can be solved with accuracy up to the 
first derivatives; one obtains the following direct 
and inverse systems of differential equations for 
the determination of A and B in terms of F and 
G, and vice versa: 

A (x) = + (I + i :: ) F (x) + i (I - i :: ) G (x) 

-I-~ (1 + q~) IF' (x)- G' (x)l 
2 qzkz k~ ' 

B (x) = + (I - i :: J F (x) + + (I + i :: ) G (x) 

+ f /~ (1 + ::) [F' (x)- G' (x)l; 
z z z 

F (x) = + (I - i ~-) A(x) -1- ~ (I + i :: ) B (x) 

_I_~(· I+ k;) [A' (x)- B' (x)l 
2 qzkz q; ' 

k ' .· k ) 
G (x) = i (I + i q: ) A (x) + + (I - i q~ B (x) 

+ + qk~ (1 + k;) [A' (x)- B' (x)l. 
z z q2 

(7) 

(8) 

We now proceed to consideration of resonant 
systems. The simplest resonant system consists 
of a single barrier located in front of an impene­
trable wall. We shall call such a system a reso­
nant condenser. Such a semi-infinite resonant 
condenser is shown in cross section in the draw­
ing, with a totally reflecting sheet bounded by the 
region x > 0. Here the boundary medium I and 
the layer-resonator III possess large indices of 
refraction n and n2, respectively. The totally 
reflecting layer II and the boundary medium IV 
possess small indices of refraction n1 and n1, 
respectively. It is assumed that the waves are 
incident from medium I on the separation bound­
ary at such large angles of incidence a that 
complete internal reflection takes place in the 
planes P 12 and P 34 ; i.e., the following conditions 
hold: 

sina > n1 /n and sin a> nlfn. 

The appearance of waves along the totally re­
flecting layer II is due to the smallness of its 
thickness d1. In this case, the appearance of en­
ergy inside the resonator III has a resonance 
character and for certain fixed conditions depends 
on the thickness d2 of the resonator. To be pre­
cise, upon satisfaction of definite resonance condi­
tions, which are determined from the Eqs. (9) set 
forth below, the amplitude of the wave inside reso­
nator III increases sharply in the case of an un­
bounded system. In the presence of a boundary, 

IY III I! I 
z I I •0 

~4 ~3 'P,z 

this resonance accumulation of waves will take 
place gradually in a certain portion adjacent to 
the boundary; that is, a special resonant diffrac­
tion layer appears with its own characteristic 
length. It is just this layer that we wish to discuss. 

We note the curious fact* that in the case of 
oblique propagation of electromagnetic waves po­
larized in the plane of incidence in an unbounded 
lamellar plasma with continuously changing di­
electric properties, the effect of leakage and reso­
nant accumulation of energy takes place in the re­
gion behind the totally reflecting boundary, similar 
to what happens in the resonant condenser considered 
by us, in which the medium has properties which 
undergo discrete changes.4 If we take into account the 
presence of the boundary in this case, then a char­
acteristic length will obviously exist which is analo­
gous to that obtained in the present research, over 
the extent of which flow of energy takes place into 
the region behind the barrier. 

In the calculation of the semi-infinite resonant 
condenser shown in the drawing, one should deter­
mine eight complex amplitude functions, two for 
each of the media from I to IV. These amplitudes 
are connected by six matching conditions of the 
form (7) or (8) on the three boundary surfaces 

*I am most grateful to V. L. Ginzburg who turned my at­
tention to this point. 
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P12, P 2a, and P34• Moreover, it is clear from 
physical considerations that the amplitude of the 
wave in medium IV which arises on the side z > 0 
must be equal to zero, i.e., Fp34(x) = 0., since it 
would otherwise increase without limit as z-. oo. 
In order that the problem be completely deter­
mined, one must assume one of the remaining 
amplitudes as given. We shall assume that the 
amplitude of the wave incident from I on P 12 is 
given, and shall assume that an ordinary plane 
wave with constant amplitude A1 is incident from 
medium I. Thus there remain six unknown com­
plex amplitude functions, connected by the set of 
six linear differential equations of first order. 

By making use of the approximate method de­
veloped earlier, 3 these equations can be integrated 
with accuracy up to first derivatives of slowly 
changing amplitudes. As a result, we obtain all 
six desired amplitude functions, expressed in 
terms of the amplitude A1 of the wave incident 
on the system. These amplitudes depend in reso­
nant fashion on the conditions in the resonator. 
The conditions of resonance are periodically re­
peated with change of thickness of the resonator 
d2, and have the approximate form 

tg (k~d2)pe3 = -k~(qz +q:)/(qzq:- k~2), (9)* 

where, by analogy with (6), 

(10) 

For exact resonance, the amplitudes of the 
waves inside resonator III in the region x > 0 are 
equal to 

Ap, (x) ! =i B P, (x) l = [ V (q; --, k;) (q; + k~2)12qzk~] 

X exp (qz d1) (1-e-xll,) I A1 J, (11) 

while the amplitude of the wave reflected from the 
leading plane of separation is equal to 

!BP., (x) I= i I- 2e-xfl,J·IAI J, (12) 

where the characteristic length of resonant diffrac­
tion enters: 
l 0 = (kxfkz) [(q; + k!) (q; + k';)1(2qzkYl exp (2qzdi) 

x(d2 + llqz + 1/q:). (13) 

For an infinite system in the region x » Z0 we 
have e-x flo ~ 0; therefore, we find from (11) and 
(12): 

JAp,(oo) 12/]AI 12 

= [(q; + k;) (q; + k~2)/(2qzk~) 2 ) exp(2qz d1). (14) 

From (12) we have I Bp12 ( oo)l =I Arl; that is, the 
square of the modulus of the amplitude of the wave 

*tg =tan. 

inside the resonator increases by a factor of 
exp ( 2qzd1) in comparison with the incident wave, 
while the amplitude of the reflected wave is equal 
to the amplitude of the incident wave. 

The situation is different in the region 0 :::; x 
~ Z0• It is just in this region that the diffraction 
phenomena play a role. As is seen from (11), the 
amplitudes of the waves inside the resonator in 
this region increase monotonically from zero, 
gradually approaching the resonance value for an 
infinite system. On the other hand, the amplitude 
of the reflected wave, which at x = 0 is equal to 
the amplitude of the incident wave, gradually de­
creases, vanishing at x = l 0 ln 2, and then in­
creases again, approachbg the amplitude of the 
incident wave. 

The characteristic ~esonant diffraction length 
l 0, which is determined for exact resonance by 
the expression (13), can be written in the follow­
ing simple form with the help of (6) and (14): 

that is, this length is equal to the effective thick­
ness of the resonator, multiplied by the coefficient 
of amplification of the square of the amplitude of 
the wave inside the resonator and by the tangent 
of the angle of incidence. The effective thickness 
of the resonator is equal to its geometric thick­
ness plus the effective depth of penetration of the 
waves in the totally reflecting medium adjoining 
it, which plays the role of the barrier. 

In conclusion, we emphasize that the results 
obtained determined the general phenomenon of 
resonance diffraction, which is characteristic for 
any wave processes in lamellar media. The es­
sence of this phenomenon consists of the fact that, 
in the oblique incidence of waves, there is always 
a certain region abutting the boundary of the sys­
tem, in which a gradual leakage of the waves in­
side the resonator takes place. In this region, 
the amplitude of the waves inside the resonator 
gradually increases, as the distance from the 
boundary increases as 1-e-xllo, from zero up 
to the resonant value of the amplitude of the wave 
inside an unbounded resonant system. The di­
mensions of the region in which these phenomena 
take place are determined by the characteristic 
length of resonance diffraction, which is in turn 
determined by Eq. (15). 
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