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The probabilities for energy dissipation of molecular oscillations in liquids are calculated. 
Exchange (short range) and electrostatic interaction forces between the molecules are 
taken into account. It is found that dissipation of vibrational energy due to exchange forces 
may explain the temperature course and the order of magnitude of the line widths of the 
molecular vibrational spectra in liquids. The role of electrostatic forces in energy dissi­
pation is comparable with the role of exchange forces only in the case of complexes con­
sisting of charged particles. 

INTRODUCTION 

THis paper is devoted to a calculation of the life­
time of a liquid molecule in a definite vibrational 
state. The calculation has been carried out in 
order to elucidate the nature of the line widths 
of the vibrational (infrared and Raman) spectra 
of liquid molecules. The prevalent notion is that 
the width of the depolarization vibrational lines 
( p ~ %) is due to a considerable extent to Brown­
ian rotation of the anisotropic liquid molecules. 1•2 

Estimates of the broadening due to dissipation of 
the vibrational energy have not yet been made. We 
consider first dissipation processes due to ex­
change short-range molecular interaction forces. 
Such forces act between all molecules, and the 
broadening that they induce will be present in the 
spectra of all liquids. We shall then consider dis­
sipation processes due to electrostatic interaction 
between molecules in dipole liquids. In conclusion 
we shall discuss briefly the experimental data. 

2. DISSIPATION OF VIBRATIONAL ENERGY OF 
MOLECULES. EXCHANGE INTERACTION 
OF PARTICLES 

We single out one molecule in the liquid and de­
scribe its internal vibration by a set of normal co­
ordinates Qj; the atoms making up this molecule 
will be assigned numbers i; the atoms of the 
neighboring molecules will be designated A. In 
accordance with the problem posed, we must sep­
arate that part of the energy of exchange interac­
tion of atoms i and A of two molecules, which 

depends on the coordinates Qj. According to 
quantum-mechanical calculations, we choose for 
the exchange-interaction energy the expression 
(see Seitz3) 

H (R) = V0 exp (- aR), (1) 

where R is the distance between the nuclei of the 
interacting atoms. We obviously have 

RtA = I r2 + s,- r A I = RJA - ( R.7As;)/ RJA. (2) 

where r~ + si and r A are respectively the radius­
vectors of atoms i and A; Si is a small displace­
ment of the atom i, due to the internal vibrations 
of the molecule. 

Expanding (1) we obtain for the sought energy 

H' = -aV0 ~exp (-aR?A) (R.?As;) I R?A. (3) 
i.A 

We introduce the unit vector niA• directed along 
R~A' and make in (3) the substitution 

as. 
s, = ~ aQ QI; (4) 

i I 

Then the matrix element of the transition nj 
- nj - 1 ( nj is the quantum number of oscillator 
Qj) is 

H~r+n1 -1 = -aV0 ~ exp (-aR7A) (n1A as, !aQ} (tin/ 2p.p>?'· 
i, A (5) 

Here 1-Lj and wj are the mass and frequency of the 
oscillator Qj. 

The time dependence of (5) is contained in RiA 
and niA• which vary at random as the molecules 
are displaced relative to one another. RiA• niA 
are coordinates that describe the translational 
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and rotational degrees of freedom of the molecules; 
in the transition nj - nj - 1, the energy is trans­
ferred from the oscillator Qj to the indicated de­
grees of freedom. 

To calculate the transition probability we use 
the perturbation-theory formula 

(6) 

where p ( Wj) is the spectral density, calculated in 
terms of the normalized correlation function g ( T) 
of the random auantity H' :4 

+oo 

p(ffi) = ~ e-iw~g(T)dT, 
-co 

g(-r) = H'(O)H'(-r)//H'(0)/2• 

(7) 

The interaction energy H' is greatly changed as 
the distance between the particles is changed by 
an amount on the order of the atomic diameter. 
We shall therefore use, as the time during which 
the values of H' are correlated, the time of the 
"sedentary" life of the molecule between the two 
jumps5 

and the correlation function will be taken in the 
form g ( T) = exp ( - T /T c ) . Then 

? (ffij) = 2Tc/(1 + ffiJT~). 
The probability of the transition nj - nj - 1 will 
be found with the aid of (5), (6), and (9): 

-2 4rr.NV~ I asi 12 nnj - " ( 1 
Wnr~nj-1 = n -3- ~ aQ. 2f.L·W·e 2 A 4ct 

i I I I 

Ll. cx.:l2) +-z+z- p(ffij)· 

(8) 

(9) 

(10) 

Here N is the number of particles per cm3 and ~ 
the shortest approach distance between the atoms 
i and A. In averaging the square of I H' I, the 
summation over A is replaced by integration 
over the volume. 

A numerical estimate of (10), assuming the 
values V0 =500ev, 1/a=0.4A, ~=3A, N=3 
x 1022 , Tc = 5 x 10-12 sec, J..l.j = 2 x 10-24 g, wj 
= 2 x 1014 sec-1, and I:i I 8Si/8Qj 12 = 1, we get 
wnj-n-1 ~ 25 cm-1• 

3. DISSIPATION OF VIBRATIONAL ENERGY 
OF MOLECULES. ELECTROSTATIC INTER­
ACTIONS 

Let us consider the probability of dissipation 
of the vibrational energy of the molecules, due to 
electrostatic interactions between dipoles and a 
dipole liquid. The part of the dipole-dipole inter­
action dependent on the coordinates Q(i) of the 
vibrations of the molecule i is equal tb 

H' = "' Q<'> ,-. R.~5 [ R.~ (d ou>) - 3 (d R ) (DU> R ) l. .LJ I .LJ 1 A 1.-\ .I 1 .I .4 1 A ( ) 
i A 11 

Here op) = 8di/8Qj; di and dA are the dipole 
moments of the molecules i and A. 

The time dependence of the energy H' is due 
to the rotational and translational diffusion of the 
particles. These motions will be regarded as in­
dependent, and their corresponding contributions 
to dissipation will be assumed additive. To cal­
culate the correlation function g ( T) and the spec­
tral density p ( w ), we use the solutions (Green's 
functions) u ( q0, 0; q, T) of the corresponding 
equations of free diffusion. For the rotational 
motion we find 

grot (T) = exp (-/ T I!Tral), (12) 

Trot = 4 (rrfja3/kT) = 4T0 • 

(13) 
Analogously we obtain for the translational 

motion6 

l't (ffi) = 36T0 l(z-3 - 2z-5) + e-z cos z (z-3 + 4r~ + 2z-5) 

z = l 1 24ffiT0 • (14) 

It is easy to find the limiting expressions for 
(14): 

Pt (ffi) = 3/(4Jf6ffi'I•Tci'•) for ffiT0 ~ 1, 

Pt (ffi) = (24/5)T0 for ffiT0 ~ 1. (15) 

After averaging I H' 12 over the angles and the dis­
tances, using (13) and (15), we obtain the probabil­
ity of the transition nj - nj -1 for WjTo » 1: 

8rr.N ni n-1 d2 (DU>)2 [ 1 , y3 ] (l 6) 
Wnr+ni- 1 = -9- 2f.LiWi (2li)3 2wj-r0 

1 4w'j• -rci• ' 

Here a is the radius of the molecule. A numer­
ical estimate of the probability Wn·-n·-t• assum-
ing the following values, J J 

N=3·1022 , d= 1.5D, DU>=5·10-10 cgs esu/ 

T0 = 5-10-12 sec, 

ffiJ = 1014 sec - 1, 2a = 4A, 1lJ = 2. w-24 ; 

yields w1 _ 0 = 4 x 1011 sec-1• 

We have also calculated the probability of dissi­
pation of the vibrational energy of ionic complexes 
formed in the solutions of metal-ion salts. To be 
specific, we consider octahedral complexes. The 
electric moments of the complex vanish under 
equilibrium. The internal vibrations disturb the 
symmetry of the complex, which acquires a quad­
rupole moment. The five independent components 
of the quadrupole moment, introduced in accord-
ance with the formulas y- 6 

D0 =----:;:Dzz, 

Du = ± Dxz- iDyzo 2D±!2 = Dxx-DyJA".:f 2Dxyo (17) 
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are expressed in terms of the normal coordinates 
Qj of the vibrations of the complex in the follow­
ing manner: 

D 0 = 6V2 dQa. D±t = ± 6d [ Qs=F i Qsl. 

D:r. 2 =2d [6Q2=F3iQ4-2¥3Qal· (18) 

Here d is the dipole moment of the particles form­
ing the complex. Then the particles carry equal 
charges q, and we must put qb in (18) in lieu of 
d (b is the distance between the particles in the 
complex). The components Dr in (18) are defined 
in a system of coordinates rotating together with 
the complex. In the laboratory system we write 

D ~ (2) 
P = LJ Trp (8, 'ljJ, <p) D,, 

r=-2 

where T~~ ( e, 1/J, cp) are generalized spherical 
functions.s 

It is also easy to find the components of the 
tensor of the electric field intensity gradient of 
the dipole dA (dA, aA, f3A) at a distance RA 
( R A• (} A• cpA) from it (near the complex): 

lr2;3 (VE)~ =(V'E)A' = dA Ri4<D~. (VE)r = + (VE)~ 

+i (VE)~=dA RA:4<D)l1 , 

(19) 

2(VE))l2 = (VE)~z- (VE)~ + 2i(VE)A' = dA R~<DA2 ; (20) 

<1>~4 = (4n:!V7)[V8Y;1 (6) Yi (a) + Jf8 Y~ (6) Y1- 1 (a) 

- Jfl2Y~(8) Y~ (a)], 

<Pi{ = (4n:1 lf7)[V20Y~2 (6) Yi (a) + l!fiY~ (0) ~1 (a) 

- 4Y;1 (8) Y~ (a) I, 

<I>A.2 = (4n:/V7)[Jf2Y; 1 (6) Y~1 (a)- YIOY; 2 (6) Y~ (a) 

(21) 

The energy of interaction between the quadru­
pole moment of the complex and the electric field 
of the dipoles surrounding the complex will be 
written with the aid of (19) and (20): 

2 2 

H' = ~ L]Dr L] T~~ (8, 'ljJ, q;) ~ (VE)A· (22) 
r=-2 p=-2 A 

We give the calculated spectral density of H': 

Prot (w) = 2-r,/(1 + w2-r;), 1/-r, = 1/'tl + 1/'t2, 
(23) 

a 1 and a2 are the radii of the complex and of the 
solvent molecule. If H' is disturbed by transla­
tional diffusion, 

Pt(ro) = 480-r0 [('/4 z- 3 - 3/ 2 z-5 -9z-1) 

+ e-z cos z (- 1/ 4 z-3 - 3z-4 - 15/ 2 z-& + 9z-7) 

+e- 2 sinz(- 1/4 z-3 + 15j2 z-~+ !Sz-6 + 9z-1)]. (24) 

Determining the average of I H' 12, we obtain for 
the probability that the energy of one of the oscilla­
tors of the complex ( Q2 ) will change by an amount 
tiw2 

1024rr d2d~ N lin2 (16 ) 
Wrz,-+n,-1 = 25 li2 (2a)5 2~-L2W2 7 'to + 2Tr ' ffi'to< I' 

(25) 
1024rr d2d~N lin2 ( 2 .5 ·. -

Wrz,-+n 2-1 = ~•2(''a)" :J, ,,, -.,-+ 4 fG 'I " )• ffiTo;?> I. 
"'-v '" - -r2VJ2 {I) ... '( W ,z'( 1! 

2 r 2 ° , (26) 

A numerical estimate of the probability by means 
of (26), using values typical of aqueous solutions, 
namely d = dA = 1.85 D, N = 3 x 1022 cm-3, J.J.z 
=3.6x10-22 g, w2 =5x1013 sec-1, 2a=4A, and 
To= Tr = 5 x 10-12 sec yields w1 _ 0,= 1.1 x 1010 

sec-1• If the complex is made up of' charged par­
ticles, we must replace d by the quantity qb 
f':; 10-17 cgs esu; in this case w1 _ 0 = 1012 sec-1 

= 5 cm-1. 

We must note that the calculation given here is 
approximate, owing to the use of an expansion of 
the energy of electrostatic interaction between 
molecules in powers of the multipoles, an expan­
sion which is correct only for large distances 
between molecules. 

CONCLUSION 

The experimental material on the line widths of 
the Raman and infrared spectra of molecules in 
liquids is scanty. The most systematic investiga­
tions of the line widths of Raman scattering in 
dipole organic liquids was carried out by Rakov. 2 

He observed an exponential increase in the line 
width with increasing temperature: 6 ( T) = b.o 
+A exp (- E/RT), and the values he obtained for 
the parameter E agreed closely with the viscosity 
barrier for the investigated liquid. In addition, a 
correlation was observed between the degree of 
depolarization p and the width of the line: the 
greater p, the broader the lines. These facts 
can be explained by assuming that one of the prin­
cipal causes of Raman line broadening is Brownian 
rotation of the molecules with an anisotropic ten­
sor of the derivative of the polarizability with re­
spect to the normal coordinates of the vibrations. 
This source of broadening, however, is lacking in 
oscillations which have an isotropic tensor of the 
derivative of the polarizability. 

It appears to us that the experimental data can 
be explained better by taking into account the dis­
sipative broadening of the lines considered in the 
present paper. The temperature dependence pre­
dicted by (10), as well as the calculated order of 
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magnitude of the line width, coincide with those 
observed. The width of the polarized lines in 
dipole-free liquids is determined obviously es­
sentially by the dissipation of the vibrational en­
ergy through exchange interactions. For depolar­
ized lines, the dissipative broadening and the 
broadening due to Brownian rotation of the mole­
cules will be additive; as a result, the greater p 

the greater the width. 
We note that the contribution made by dissipa­

tion of the vibrational energy through exchange in­
teractions to the line width depends greatly on the 
distance between molecules; in this connection, it 
would be interesting to observe the dependence of 
the line width on the pressure in the liquid. In ad­
dition, steric effects can be important; in complex 
molecules protected against external influences, 
vibrations may produce narrower lines. 

In dipole liquids there is an additional dissipa­
tive broadening due to the presence of electro­
static interactions between molecules; judging 
from our estimate, this broadening is approxi­
mately one order of magnitude smaller than the 
broadening due to exchange interactions. Only in 
ionic complexes consisting of charged particles 

will the electrostatic and exchange interactions 
yield comparable contributions to the line widths. 
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