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It is shown that under certain conditions the direction of motion of multiply charged ions in 
a singly ionized plasma in a fixed electric field must be opposite to that of the singly charged 
ions. Under these conditions the velocity of the multiply charged ions can be of approximately 
the same magnitude as the directed electron velocity while their energy can be one to three 
orders of magnitude greater than the thermal energy of the singly charged ions and the 
electrons. 

l. We consider an ion of charge Ze in a fully ion
ized plasma, consisting of electrons and singly 
charged ions, in a fixed electric field. The motion 
of the ions is obviously described by the equation 

Mdv!dt = eZE- F,- f;. (1) 

Here, M is the ion mass, v is the ion velocity, 
Fe + Fi is the friction force which arises by virtue 
of the interaction with the plasma electrons (Fe) 
and ions ( Fi ). 

Because of the reciprocal nature of the inter
action between the electrons and the ions, Fe can 
be written in the form 

F, = mv,;(N,/Nz) (v-v,0 ) 

(cf. reference 1, Sec. 63). Here, m is the mass, 
Ne is the number density, v eo is the mean directed 
velocity of the electrons, N z is the number density 
of ions with charge Ze, and Vei is the frequency 
of collisions between the electrons and these ions. 
Hereinafter it is convenient to consider Eq. (1) in 
a coordinate system that moves with the singly 
charged ions. The expression for Fe can then 
be written in the form 

(2) 

where v0 =Yeo- Vio is the difference between the 
mean directed velocities of the electrons and the 
singly charged ions, while Veo is the effective 
collision frequency for collisions between elec
trons and singly charged ions in the fixed electric 
field: 

v = _!_ V2neW m -';, (kT ) -'!, In A. eo 3 , e (3) 

Here, N = Ne = Ni is the number density for the 
electrons or single charged ions in the plasma, T e 
is the electron temperature, k is the Boltzmann 
constant and ln A is the Coulomb logarithm. 

Since v0 = eE/mveo• the expression for Fe, 
Eq. (2), can be written 

We note that this expression applies only when 

(2b) 

where VTe is the thermal velocity of the electrons. 
In other words, the essential requirement is that 
the mean directed velocity of the electrons must 
be smaller than their thermal velocity. Dreicer2 

(cf. also reference 3) has shown that this require
ment is satisfied only when E « Ec = 47fe3N ln A/ 
kTe. For the effects considered in the present 
paper, we shall be interested in relatively weak 
fields in which this condition is obviously satis
fied [ cf. Eqs. (5) and (10)]. * Furthermore, it fol
lows from Eq. (2b) that the velocity of the multiply 
charged ion must be smaller than the thermal ve
locity of the electrons, a condition which we natu
rally assume to be satisfied. 

However, the analagous condition for the inter
action with the plasma ions, v < vTi• cannot be 
satisfied. When v > vTi the collision frequency 
goes as v-3 while the frictional force goes as 
v-2• When this circumstance is taken into account 
the force Fi is given by the approximate expres-
sion: 

(4) 

*We note that because of this condition, Eq. (2a), which 
gives the friction force, does not apply if the plasma density 
approaches zero (for a fixed value of E). Consequently, the fea
tures of the behavior of multiply charged ions noted below do 
not appear in this case; these ions then move in the direction of 
the field, as expected. 
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FIG. 1. The dependence of v/vTi on y = e (Z -1) 
x E/Zmve0VTi = (Z -1) v0/Z VTi for different values of y 
= (M0T~/mTi0)y,; y = 172, 60.8, 21.5, and 3 for curves 1, 2, 3, 
and 4, respectively. 

y 

Here, M0, Tio and VTi are respectively the mass, 
temperature, and thermal velocity of the plasma 
ions. The parameter y is determined by the prop
erties of the plasma in which the multiply charged 
ion is located. The value of y is usually very 
large; for example, if Tio = Te, then in deuterium 
y f':! 60.8 and in hydrogen y f':; 43. 

Equation (1) is now written in the form 

Mdv!dt = - eZ (Z - 1) E 

-mveoZ2v [1 t-y/(1 +vlvr1) 3)l. (1a) 

What is most obvious from the above is that a 
multiply charged ion moving with the singly charged 
ions in the plasma (v = 0) is always acted on by a 
force in the direction of motion of the electrons. 
The origin of this force is easily understood if we 
consider that the force eE which the field exerts 
on the plasma ions (i.e., the singly charged ions) 
is exactly balanced by the friction caused by the 
interaction of these ions with the traveling electron 
stream. If a multiply charged ion is placed in this 
plasma, the force exerted on it by the field is 
larger by a factor of Z, while the friction force 
is larger by a factor of z2, so that the multiply 
charged ions are carried along by the electron 
stream. 

Solving Eq. (1a) we can find the velocity of the 
multiply charged ion. The dependence of this ve
locity v on electric field, as determined from this 
equation for stationary conditions ( dv I dt = 0), is 
shown in Fig. 1. It is obvious from the figure that 

in general the relation between v and E is not 
unique; in the region 

3y'l•mveo v rtZ/2'/, e (Z- 1) <;;; E <;;; 2'/, ymveoV rtZJ3e (Z- 1) 

(5) 

a given value of field corresponds to two stable 
stationary values of the velocity rather than one, 
as is usually the case (the third stationary value 
of the velocity, shown in Fig. 1 by the dashed line, 
is unstable). 

In the first stationary state, which corresponds 
to the lower curve, the velocity of the. multiply 
charged ions is small: v1 f':! v0 ( Z -1 )/yZ. In this 
case the interaction with the plasma ions (the 
force Fi) is decisive. On the other hand, in the 
second stationary state, corresponding to the upper 
curve, the velocity of the multiply charged ion is 
very large: v2 f':; v0 ( Z -1 )/Z. Under these condi
tions the interaction with the plasma electrons as
sumes the dominant role because the ion interac
tion becomes unimportant at high velocities (v 
» vTi). The energy of the multiply charged ion 
is always large in the second stationary state: 

M v~ M . Vo ) 2 (Z - 1 )2 
E2 = ---;r- = Mo (vTi -z- kTto· 

This energy is many times (one to three orders 
of magnitude) greater than the thermal energy of 
the electrons or ions in the plasma. The charac
teristic time T required for the ion to acquire an 
energy E2 is of order M/mve0Z 2• 

As y decreases the difference between the 
curves corresponding to the first and second 
states become smaller (cf. Fig. 1). These curves 
finally coalesce when y::::: 3 [i.e., Te/Tio::::: 2.1>< 
(m/M0 ) 1!3] andinthiscase a given energy E cor
responds to one stationary value of the velocity v. 

With respect to a fixed observer (not with re
spect to a singly charged ion, as considered above) 
the velocity of the multiply charged ion is obvi
ously v + Vio• where Vio is the mean velocity of 
the singly charged ions. Since the velocity v is 
always in the direction of motion of the electrons 
while the velocity Vio is in the opposite direction, 
the multiply charged ion can move in either direc
tion, depending on the ratio of the velocities v and 
Vio· In particular, in a fully ionized equilibrium 
plasma (laminar) the velocity Vio is very small 
(its magnitude is limited by the conservation of 
total momentum for the electrons and singly 
charged ions Vio = mve0 /M0 ) so that v is almost 
always larger than Vio (for y < M0/m). Thus, 
in an equilibrium plasma the multiply charged 
ion almost always moves in the same direction as 
the electrons. Under actual conditions, however, 
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the directed velocity of the singly charged ions 
can be appreciably greater;4 in any case, it can 
be greater than the first stationary velocity of the 
multiply charged ions.* On the other hand, the 
second stationary velocity is always greater than 
Vio· 

Thus, the elementary analysis given above in
dicates that two substantially different stationary 
states of multiply charged ions in a plasma can 
occur at a single value of the field. However, 
this analysis does not tell us which of these states 
is actually realized. Since any velocity is possible, 
by virtue of the existing particle velocity distribu
tion, any of the ions will, in general, always be in 
one state (i.e., the velocities of these ions will be 
grouped about one of the stationary values) while 
the other ions will be in the other. Transfer of 
ions between states is also possible. How many 
ions will be in each of the states at total equilib
rium? These questions can be answered only when 
the velocity distribution of the multiply charged 
ions is analyzed. 

2. In a fully ionized plasma the kinetic equation 
for the velocity distribution f ( v, t) of ions with 
charge Ze is of the form 

iij_- eZ (Z -1) E I cos 8 al_ sine()_[') - __!___ ~ {v2 Ci' M v (v) 
at M \ av v ae ' v2 av Mo I 

X G (.· v ) I kTio !1 -1- vf J 
, (2kTio I Mo)'h \ M av . ' 

m 'kT at · 't + M v,.ozz (Me av + vf)J[ 

-.vt(v) H( v )~(sine!.L)· =0 (6) 
2 Sin 8 ('2kTio I Mo)'l· .a6 ao . 

Here, 8 is the angle between E and v, Vi(V) 
= 47Te4NZ2 ln A/M2v3 is the collision frequency for 
collisions between multiply charged ions and singly 
charged ions, and G (x) and H (x) are the func
tions introduced by Chandrasekhar:5 

G (x) =<I> (x) -2xe -x• I Vn, 

H (x) = (1- {- x- 2) <I> (x) +e -x• I Vnx, 

where <P (x) is the probability integral. When 
x » 1 the functions G ( x) and H ( x) are close to 
unity; when x « 1 we have 

G (x) = 4x313Vn, H (x) = 4xi3Vn. 

It is obvious from Eq. (6) that the multiply 
charged ions, which move with singly charged 

*The relation mveo + M0 Vio = 0 breaks down even if the 
plasma contains a large number of neutral particles or multiply 
charged ions, but all the more so in the presence of essentially 
nonequilibrium processes such as may cause a marked increase 
in the transfer of electron momentum to the walls of the chamber 
or to the inhomogeneities of the magnetic field. 

plasma ions, are subject to a force F = - eZ x 
( Z -1) E in the direction of motion of the elec
trons.* 

For low velocities v ~ (kTio/M)112 it is natu
ral to seek a solution of (6), as usual, (cf. refer
ence 7) in the form 

f = fo (v) +h (v) cos 6 +x (v, 6), X ~fo. (7) 

The function f1 is then easily found to be 

il.1 a { (kTto a[l '} v lv) H (x) {1--'-- v2vt(v) G (x) ,-M a-v + vf1) 
' ' M 0v2 av 

eEl (Z -1) a to 
M av. (7a) 

In this case the function f0 is Maxwellian with a 
characteristic temperature Tio· It is obvious from 
Eqs. (7) and (7a) that at small velocities the dis
tribution function is weakly dependent on the direc
tion of the velocity. 

On the other hand, at high velocities v 
> (kTio/M)112 the distribution function is sensi
tive to the direction of the velocity. A method of 
solving an equation similar to Eq. (6) in the high
velocity region has been developed in reference 3; 
it is shown that at high velocities the distribution 
function decreases slowest in the direction of the 
acting force 8 = 0, i.e., in our case, in the direc
tion opposite to the electric field. For velocities 
close to this direction ( 8 = 0) the distribution 
function is of the form 

{ ~v Mvi (v) Gv I M 0 + mv,0 Z."viM-eZ(Z-1)£1 M ~ 
xexp- v.(v)GkT. 1M 0 -j-v Z2kTmjM 2 dvJ ,(8) 

t tO 1 eo e 
v, 

where N1 is the number density of the multiply 
charged ions in the first equilibrium state and v1 

is the first root of the equation 

MM.'>'t(v)G( v )v-+-~v Z2v-eZ(Z- 1)E =0 
o (2kTio I Mo)'l, . fill eo M (9) 

Equation (8) is obtained as a first approximation 
in an expansion in powers of the parameter 
(kTio/Mv~ )112 in the exponential term; it is valid 
only when v < Vc where the critical velocity Vc 

*Equation (6) is written in a coordinate system that moves 
with the singly charged plasma ions. The collision integral for 
collisions between the multiply charged ions and the electrons 
and ions in the plasma is used in the differential form given by 
Landau• (terms ·that describe collisions with electrons are writ
ten under the assumption that the ion velocity v is smaller 
than the mean thermal velocity of the electrons). For simplicity 
it is assumed that the singly charged ions have a Maxwellian 
distribution. The directed velocity of the electrons is taken to 
be v0 = eE/mveo· Interactions between the multiply charged 
ions themselves are neglected. 
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is the mean root of Eq. (9). It is apparent that a 
critical velocity v c does not exist for every value 
of the field: E must be larger than Ec1 and smaller 
than Ec2 where 

E _ _ Z_ ( 3m )'/•4:te3N In A_ 1 7 _Z_ 1 MP\•·, A' In A 
cl- Z -1 21tMo kTe .~ · Z- 1 \Mo) 1014 kTe ' 

E _ 0 ')j z 4:te3 N InA_ 5 5 _z_ ~~ (1 0) 
C 2 - • " L -1 kT. - • z -110'" kT. 

LO tO 

(in the numerical expression kTe and kTi are 
given in ev and E is in v/cm; Mp is the mass of 
the proton). 

If E < Ec1 or E > Ec2, the distribution function 
decreases monotonically with increasing v; when 
Ec1 < E < Ec2 the function exhibits a second maxi
mum. Thus if the field E lies between Ec1 and 
Ec2 the second stationary state indicated in the 
preceding section is possible. As expected, the 
field values Ec1 and Ec2 coincide with the limit
ing values of the field indicated by Eq. (5) to with
in a numerical factor of order unity. 

Further, it has been noted above that if Ec2 

> E > Ec1, then Eq. (6) gives the distribution func
tion only when v :::::: vc. The form of the distribu
tion function for v > v c can be found easily by 
means of the preceding method but now the origin 
in Eq. (6) must be displaced to the point v2, cor
responding to the second equilibrium value of the 
velocity, i.e., the second maximum in the distri
bution function in Eq. (8). In this case the veloc
ity v2 is naturally determined by the same rela
tion, Eq. (9). As before, when v > Vc the distri
bution function exhibits a maximum in the direc
tion e = 0. In the first approximation it is 

v2-v~ 

{ ~. eZ(Z-1)E/M-mve0Z2v/M-Mv1(v)GvfM0 s' ( 1 ) 
xexp - v Z2kT mfM2 ' v. (v) GkT. ;M dv ' 1 

eo e T t tO o 
v, 

where v' is the velocity in the new coordinate 
system, while N2 is the density of the multiply 
charged ions under consideration in the second 
equilibrium state (it is obvious that Nz = N1 + N2 

where N z is the total density of the indicated 
ions). 

When v = Vc the values of the functions in Eqs. 
(8) and (11) must obviously be the same at equilib
rium; this condition then determines the ratio be
tween the number of multiply charged ions in the 
first and second states at equilibrium: 

N 2 { ~v'Mv1 (v)Gv/M0 -,-mve<pv;M-eZ(Z-1)E/Md 1 
-N =exp - Gk1' . M ' Z 2kT M 2 0 f" 

1 'Vi ( V) to I o T V eo em I 
v, (12) 

It is important that the ratio N2 /N1 is usually 
very sensitive to changes in the field E; when E 
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is changed by the order of ten percent the ratio 
N2 /N1 can change by a factor of ten. Consequently, 
it is natural to introduce a critical field Ec, de
fined by the condition N2(Ec) = N1(Ec). When E 
< Ec almost all the particles are in the first sta
tionary state and when E > Ec almost all the par
ticles are in the second state. In this case the 
field Ec can be written in the form 

Ec = 'A (TeiTto) Ec1. 

where Ec1 is determined by (10) and A. ( Te /Tio) 
is the numerical factor given in Fig. 2. It is clear 
from the figure that A. is a rather weak function 
of the ratio Te/Tio· 

Using the distribution function obtained for the 
multiply charged ions we can naturally compute 
the mean directed velocity v in the equilibrium 
state. The velocity v is given as a function of 
electric field in Fig. 3. It is obvious from the 
figure that near the value E = Ec there is some
thing like a transition from the first stationary 
state for the directed velocity, indicated in Sec. 1 
(cf. Fig. 1), to the second, as expected. 

We now estimate the characteristic time re
quired for the establishment of the equilibrium 
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FIG. 3. The dependence of v/(kTio/M0)y, on E/Ec, for T e 
= Ti0, M0/m = 3.7 x 103 (deuterium). 
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state under consideration. We assume, for ex
ample, that at the instant the field is switched on 
all the particles have low velocities so that the 
first stationary state is established in a time T 

~ M/mve0Z2• This state is naturally unstable when 
E > Ec: some of the multiply charged ions are con
tinuously transferred to the second state. The flow 
of ions from the first state can be determined with
out difficulty if we make use of the results of ref
erences 3 and 8: 

S = _ dN1 = N'_ Z2 v,o (!'!____)''• (!_y___)'/• (_!__-)'!. 
dt V2n Mo T;0 Ec2 

X exp {- ]_2 ~ Ec 2 l. 
M 0 E f 

Thus the characteristic time for the establishment 
of the equilibrium state is 

M ~ ((M0/m)'1•;v,oZ2)exp { 1.2M£c2/M0£}. 

This time is quite large when M » M0• In this 
case T « .D.t and the first state indicated above 
becomes "quasi-stationary" when E > Ec. The 
same situation obtains for the second state when 
E < Ec. In Fig. 3 both of these conditions are 
shown by dashed lines. However, if M ~ M0, then 

.D.t and T are of the same order of magnitude. In 
this case only the equilibrium state shown by the 
solid line in Fig. 3 is meaningful. 

The author is indebted to V. L. Ginzburg and 
M. A. Leontovich for valuable discussion. 
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