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The dielectric constant of a relativistic plasma Eij ( w, k) is considered with pair production 
taken into account. The effect of recoil on the Cerenkov absorption is also considered. The 
spectra for longitudinal and transverse plasma oscillations are analyzed at high densities 
and temperatures, in which case absorption due to pair production is possible in addition to 
Cerenkov absorption. 

l. Spatial dispersion in an ultrarelativistic plasma 
has been' considered by Silin1 in the classical (non­
quantum) limit. The classical analysis cannot be 
used at high plasma temperatures and densities. 
For example, at densities N,..... 1032 cm-3 the natu­
ral frequency of the longitudinal oscillations is of 
the order of twice the mass of the electron (for 
li = c = 1) and the processes of virtual and real 
pair production have an important effect on the 
dielectric constant. 

However, even at low densities the relativistic 
quantum-mechanical calculation makes it possible 
to take account of recoil in the Landau damping of 
the longitudinal waves.2 This damping is an in­
verse Cerenkov effect for the longitudinal waves, 
in which the wave is absorbed by free plasma 
electrons by virtue of the transfer of momentum 
to the medium (Fig. 1a). The quantum-mechan­
ical effect of recoil on Cerenkov radiation of par­
ticles in a medium was first considered by Ginz­
burg.3 

In addition to Cerenkov absorption (cf. Fig. 1a), 
at high densities it is possible to have absorption 
due to pair production (Fig. 1b); the latter process 
is allowed by the conservation laws because part 
of the momentum is taken up by the medium itself. 
This damping mode is possible for both the longi­
tudinal and transverse electromagnetic waves (in 
appropriate regions of w and k). The process 
shown in Fig. 1a is also possible for the trans­
verse waves. 

The production of pairs in a medium has been 
treated by Saakyan, 4 who used a phenomenological 
quantum-electrodynamical description, but the 
spatial dispersion of the dielectric constant was 
not taken into account.* 

*Furthermore, the expression used for E:(W) in reference 4 
is not applicable at high densities and temperatures. 
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FIG. 1 

2. When spatial dispersion is taken into account 
in an isotropic plasma, the dielectric constant be­
comes a three-dimensional tensor:*6 

e.ii = {j ti + 4l'Hu-1o ii = e1 ( {j iik- k-2ktki) + e1k-2ktki, (1) 

j, = Oti (ro,k) Ei, Oti (ro, k) = o1 (b,i- k- 2k,kt) + o'k-'2k)li> 
(2) 

where h is the four-dimensional Fourier compo­
nent of the current, Ej is the Fourier component 
of the electric field, al, at, El, and Et are respec­
tively the longitudinal and transverse (in the three­
dimensional sense) electrical conductivity and di­
electric constant. 

The four-dimensional representation can also 
be used: 

Il. = Il . = - ik.o1 
t1 4l l ' 

(3) 

where Av is the Fourier component of the poten­
tial. The relation between III-LV and aik can be ob­
tained easily from Eq. (1) if Ej is expressed in 
terms of the potentials and j4 is found from the 
equation of continuity: j4 = - ( 1/iw) kih· The re­
lation in (3) can be substituted in Maxwell's equa­
tions: 

(k~b - k k - 4:rtH,v) A = 4:rtj0, (4) 
r.. p.v 1-1 v r v p. 

where jt is the Fourier component of the external 
current. 

*Hereinafter we use h = c = 1; i, j = 1, 2, 3; ll• v = 1, 2, 3, 4. 
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If the external source is given by a 6-function 
we obtain the following equation for the Green's 
function D: 

(5) 

The equations for the Green's function in quantum 
statistics has been investigated in detail by Frad­
kin. 7 The equations for the time Green's functions 
in quantum statistics have been considered by 
Kogan8 and Bonch-Bruevich. 9 

3. To terms of order e2, the causal polariza­
tion operator IT~v is made up additively of the 
corresponding operators for the electrons and the 
ions. As an example let us consider the electrons: 

Il~v (ro, k) = (2ie
2J• \ Sp r G (p + k, ro +A.) r G (p, A.) dpdA., 

:rt J p. v . (6) 

where the yJJ. are the Dirac matrices while G (p, A.) 
is the electron Green's function in the momentum 
representation: 

G (p, A.) = ~ Tr [ pT (~1 ~2)] e-tpr+O.t drdt, (7) 

where r = r 1- r 2, t = t1- t2, T is the sign of the 
time ordering, p is the density matrix ( Tr p = 1 ), 
~1 = ~ ( r1, t1) and ~2 = ~ ( r 2, t2) are operators in 
the interaction representation: 

¢(r,t) =exp [it(H0-rtN0)l~(r)exp [-it(H0 -r~No)l. 

J1. is the chemical potential of the system, H0 is 
the Hamiltonian for the free Dirac particles, N0 
is the operator for the conservation of the differ­
ence in the number of particles and antiparticles, 
Sp denotes summation over the spin indices, 
and Tr is the statistical average. 

Expanding ~ in plane waves and substituting in 
Eq. (7) we have* 

G (p, ro) = a- (p, ro) (m- ip-) I 2ep 

(8) 

P = Yp.Pp.' 

where Ep = .J p2 + m2 is the modulus of the energy 
while~ is respectively the mean number of posi­
trons and electrons with energy Ep for the density 
matrix p. The expression for G (p, w) in the non­
relativistic limit (without the positron part) has 
been given, for example, by Kogan. 8 

*The chemical potential appears with opposite sign in the 
expression for the mean number of positrons, since the number 
of positrons np is 

1-n~0 = 1- {exp (-e- /!) f3 + 1}-1 = {1 + exp (e + tJ.) [3}-1 • 

The further calculations are very simple. It is 
necessary to substitute (8) in (6), compute the 
traces of the y-matrices by the conventional rule, 10 

and integrate the resultant expression with respect 
to A., taking account of the fact that the products of 
the terms G±, which contain poles in different half­
planes of the complex variable A., make a contribu­
tion to the integral. We give the result for the lon­
gitudinal and transverse parts of the dielectric 
constant EZ and E:t:* 

ep + Ep-k I, tl I t 
+- (ep + ep-k)2- w2 A-r- f + 6E B ' 

i\~ = 1 =Fe~+ (pk)- 2 (pk)2 1 k2 

epep-k ' 

At = 1 =F m• -- (pk) + (pk)• I k2 f (cp) = 2 (2:rt) -a (nP- + n~P), 
' Bpep-k ' 

6E1 ro 2 = (ro2 - k2) 6c1 = Il =~\At eP + 8p-k dp; 
B B B :rt• J + (e + 8 -k)2- w• 

p p 

(10) 
the quantity oE:Z,t is obtained from that part of the 
polarization operator which does not vanish when 
nj) = nj) = 0; after the standard renormalization, 
this quantity gives the usual expression for the 
vacuum polarizationt (cf. reference 10). 

*The causal operator IT~v can only be used to find the real 
parts of E 1 and E t and the mom en tum integrals are to be under­
stood in the sense of the principal value. The imaginary part of 
the causal operator will not correspond to the imaginary parts of 
E1 and Et, which are determined by the retarded Green's func­
tion for the photon. The imaginary parts can be found by means 
of the Kramers-Kronig relations for !71 and at and the easily 
derived formula 

*-S x ~ w sf(:)(~ xdy =- :rt ~ dy(j! (y) b (f (y)- w), 

where the slash denotes an integral in the sense of the prin­
cipal value. Thus, to obtain the imaginary parts the energy de­
nominators must be replaced by - irr8-functions or, what is the 
same, for the complex E1 and Et in Eq. (10) we are to under­
stand w in the sense of w = w + i8 with 8 ... + 0. 

tThe relation between 8Et and 8E 1 follows from the four­
dimensional tranversality of the vacuum polarization operator. 
The real parts of 8E are small also away from the light cone 
(w = k), and will be neglected hereafter. However, the imagi­
nary part of 8E is very important for the description of pair 
production in the medium by .a photon. In particular, if the imag­
inary part of 8E is not taken into account a meaningless result 
is obtained; the amplitude of the wave increases because of 
pair production, i.e., the oscillations are excited rather than 
damped. The imaginary part of 8E is usually not considered 
because it vanishes everywhere except far from the light cone 
w 2 >4m2 + k 2 (cf. below). The dispersion curves for the longi­
tudinal and transverse waves can only fall in this region if the 
particle density of the medium is greater than 1032 em-• (cf. 
below). 
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In the nonrelativistic limit Eq. (10) coincides 
with the familiar expressions (cf. reference 6) ob­
tained from the kinetic equation. If the positron 
contribution is neglected (np = 0) in the non­
quantum-mechanical (k « p) ultrarelativistic 
limit p » m, the equations in (10) lead to the re­
sults obtained by Silin1 by means of the kinetic 
equation. Below we shall only discuss results not 
contained in reference 1. 

It should be emphasized that the positron con­
tribution cannot be neglected in the ultrarelativ­
istic limit if the system has attained total equi­
librium. In this case the chemical potential of the 
system iJ- must be found from the relation 

(:!~)" ~ (n;- n;) dp = N, (11) 

where N is the difference between the number of 
particles and antiparticles in the system. 

4. Spatial dispersion can be neglected in the 
limit of small wave vectors k, and the real part 
becomes* 

At relatively low frequencies w « 2Ep Eq. (12) 
yields the well-known expression 

(12) 

w2 = 4ne2 \ f (ep) ( 1 - _!. L) dp. 
() ~ 8 3 82 

p p (13) 

When np = 0 the expression for the natural 
plasma frequency w0 in ultrarelativistic (p » m) 
degenerate and nondegenerate gases coincides with 
the expression given by Silin. 1 If, however, a sys­
tem at relativistic temperatures reaches total equi­
librium, then at sufficiently high temperatures 
iJ- = o, ni) ~ np = [exp (p/3) + 1r1 and 

w~ = 2~ (2) e2 I 3n~2 , 

where t is the Riemann zeta function. 
At high frequencies w » 2Ep 

Re e (w) = 1 + Z I w4, 

Z = l6ne2 ~ f (ep) Ep ( 1 - + :; ) dp. 

(14) 

(15) 

For nonrelativistic temperatures Z = 16rre2mN 
whereas for ultrarelativistic temperatures, if the 
positron contribution is neglected (np = 0 ), in a 
nondegenerate gas Z = 32rre2N/j3 while in a degen­
erate gas Z = 4rre2Np0 (p0 = 27r [3N/87r]113 is the 
limiting momentum at the Fermi surface). For 

*Equation (12) coincides with the expression obtained by 
Fradkin. 7 

total equilibrium and ultrarelativistic tempera­
tures 

(16) 

5. To obtain the imaginary part of EZ,t we must 
replace the energy denominators by 6 functions 
which express the conservation of momentum and 
energy for the diagrams in Fig. 1. In momentum 
space p we introduce a cylindrical coordinate sys­
tem with Z axis in the direction of the wave vec­
tor k. With no loss of generality (formally, we 
replace p, the variable of integration in Eq. (10), 
by p ± k/2) we can set the initial momentum of 
the electron equal to p - k so that p is finite and 
the energy conservation relation for Cerenkov dis­
sipation* (Fig. 1a) 

W = Ep- Ep-k (17) 

allows us to find the electron momentum compo­
nent Pz as a function of k, w and El = "Pi+ m2 
( p 1 is the momentum perpendicular to k). 

Equation (17) has two roots 
Pt- = kl2 ± (rol k) x, 

x = [ el I ( 1 - w2 I k2) + k2 I 4 ]'1•. (18) 

Substituting Eq. (17) in Ep and Ep-k we obtain dif­
ferent signs for the two possible values E~ and 
E~-k ( E + denotes E for Pz = p~ while E- denotes 
E for Pz = Pz ) . Equation (17) is satisfied only by 
p~ and 

e; = w/2 + x, 

On the other hand, the values pz, Ep = K- w/2, 
Ep-k = w/2 + K satisfy the conservation law w 

(1~) 

= Ep-k- Ep which corresponds to another possible 
absorption process in which the initial momentum 
is p and the final momentum is p + k. It thus fol­
lows that Cerenkov dissipation is possible only 
when K2 > w2 I 4 or, what is the same thing, when 
w/k « 1. This result means that Cerenkov damp­
ing occurs only for phase velocities smaller than 
the velocity of light when recoil is taken into ac­
count. 

The energy conservation relation for dissipa­
tion due to pair production w = Ep + Ep-k has the 
same solutions (18) for Pz as (17). Both values 
p~ satisfy the conservation relation; the signs 
must be chosen in the following manner: E~ = w/2 
± K. For E~ to be positive we require w2/4 > K2; 

this is possible only when w2/k2 > 1. Thus dissi­
pation due to pair production arises only when the 
phase velocity of the wave is greater than the ve­
locity of light. 

*To be specific we take w > 0. 
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FIG. 2. a - dispersion curve for longitudinal waves for low 
densities, d - dispersion curve for transverse waves for low 
densities, b - dispersion curve for longitudinal waves for high 
densities, e - dispersion curve for transverse waves for high 
densities, BC - region of weak damping, CD - region of strong 
damping, EF - region of damping due to pair production. 

However, there is an energy threshold for the 
latter process; this threshold follows from the re­
quirement that the quantity under the radical in 
the expression for K must be positive. Since the 
distribution contains particles with arbitrary mo­
menta, in particular, momenta parallel to k 
( p 1 = 0), it is sufficient to satisfy this condition 
for El = m 2: 

w2 >4m2 + k2. (20) 

In the w - k plane the line w = k and the curve 
w2 =4m2 + k2 define the region in which neither 
of the dissipation mechanisms considered above 
is possible (the cross -hatched region in Fig. 2). 
This region is bordered on both sides by regions 
in which the absorption is relatively small. 

6. The calculation of the i~aginary parts of 
EZ,t is simplified by the fact that the integration 
over Pz can be carried out in elementary fashion 
by means of o-functions. Thus, for the imaginary 
part of Ez, which describes the Cerenkov absorp­
tion of the longitudinal waves, we have from Eq. 
(10) 

.00 

Im e~e;= 811;:2 
}, ( e• - ~) [t ( e - ~)- f ( e + ~) J de, (21) 

where Ko = K je1 =m. If the positrons are neglected, 
in a Boltzmann gas f (E) = 2 ( 21r )-3 e<JJ.-E)/3 and after 
an elementary integration we have 

The integration is also elementary for a degenerate 
gas. 

The imaginary part of Et, which describes 
Cerenkov absorption (Fig. 1a), is computed in 
similar fashion 

00 

Im e~e~ 4::~2 (I - ~) ~ (e2 + ~ -x~)[t(e- ~) 
x, 

In particular, for a Boltzmann electron gas 

(23) 

Im e1 = :- --- 1 + Rx + -" e(t~-x,)fl sh-. (24) 4e2 (1 w2jk2) ( k•~•) w[3 
cer w"k [3" P 0 4 2 

The damping due to pair production (Fig. 1b) is 
computed in similar fashion from Eq. (10): 

8n"e• w ? (. k• 2\ [f ( w ) 
lm e~ah' - _k_"_ fWT ~ 4 - e ) \ e + 2; 

u 

+ f ( ~ - e) J de+ I m 6e ~air, (25) 

l -- w• t - e•xo f 2 I 2m2 ) Im 6e_ .- ..-----k2 Im 6e 1- 3k8 I k ,- • k' 1 . 
patr w - pa r \ w-; -

(27) 

In .£articular, for a Boltzmann gas ( Im Epair 
= Im Epair + Im OEpair) 

Im ei =- ~e~ e-/l(w 2-P.) ~ [lk"f3• -2- xf~2)sh Xo~ 
pair k3 [3 3 I W I \ 4 C 

+ 2x0 ~ch x0 ~J. (28)* 

- 4e2 w (w" ) [( k2~2 ) Im e·l = - ---- - - I e-fl(w/2-IJ.) I + - 4"- sh x0 ~ 
pair w2k[32 I w I k2 

- x0 ~ ch x0~ J, 
7. We now consider the spectrum of electro­

magnetic oscillations and the damping. We start 
with the longitudinal waves, for which 

el (w, k) = 0. 

(29) 

For weak damping w = w -iy (y « w) (cf. refer-
ence 6) 

Re e1 (w, k) = 0, a r = Im e1/ -- Re et ow . (30) 

At relatively low densities w0 «2m there is are­
gion of w and k in which the spatial dispersion of 
the longitudinal waves can be considered weak 
( k « w ) for any temperature 1/ {3: 

Re el(w, k) = e (0)- w~/w2 - (Ww2) u1 (w2), 

e (0) = I - ne2 (' dpf (ep) 2 I - :3 ~ , 1(" 1p2) 
j eP eP , 

(31) 

(32) 

l -~':."__ p.~ w[3{~ ~ -L ~} -~x, Im ecer k":~ e sh 2 1 -w•;k" + [3 Xo I [32 e . 

4ne2 \ p2 ( 3 p2 ' 
(22)* ut (w2) = e (0)- 1 + (;)2) dpf(ep) --;r I - 5 E~ ) , (33) 

*sh =sinh. *ch =cosh. 
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while w0 is given by Eq. (13). 
Together with Eqs. (22) and (31), the dispersion 

equations (30) lead to a spectrum of weakly damped 
longitudinal oscillations: 

1 
w2 = -. (w2 + k2u1 (w2/B (0))) e (0) · o o ' (34) 

(35) 

It should be noted that while Eq. (34) is valid 
for undamped oscillations ( k < w ) and ultrarela­
tivistic temperatures,* the damping expression 
(35) applies only for nonrelativistic temperatures 
because the expansion in (31) does not apply in the 
region k > w for ul ~ 1 (ul is of the order of the 
mean square thermal velocity of the particles). 
For this reason we have neglected terms of order 
11 {3m « 1 in Eq. (22). When w0{3 « 1, k » w and 
k « m, Eq. (35) gives the familiar Landau damp­
ing. 2 As is well known, in this case the oscilla­
tions are weakly damped at wavelengths large 
compared with the Debye radius dk « 1 (dashed 
line in Fig. 2). 

We now consider the extent to which damping 
is reduced at nonrelativistic temperatures when 
recoil is taken into account in absorption (the 
k2 I 4 term in the expression for K~). When k2 I 4 
« m 2 there is an additional factor exp [- {3 ( k2 I 8m) x 
-../ 1 - w2 lk2 which can reduce the damping at k » w 
if k2 » 8ml {3. For wavelengths of the order of the 
Debye radius this gives {32 » 8/w~; if the gas is non­
degenerate N « 2m 3/ 2 ( 271'/3 ) - 3/ 2 we find 

(36) 

where (36) must be satisfied with a margin of at 
least two orders of magnitude. In other words, the 
damping can decrease only at sufficiently low tem­
peratures. It also follows from Fig. 2 that a region 
of undamped and weakly damped oscillations exists 
for w »2m when k,.., m. It is easy to verify that 
Eq. (30) always has real solutions in this region. 
We find Ellw=k for this region. Integrating over 
the angles, we have from Eq. (10): 

Re e1 ({J), k)[oo=k.= 1- wi1W2 , 

wzt· = 4J"Te• \ f (ep) [_3._ In cP + P - _..!.._ J dp. (37) 
~ , p m eP 

At nonrelativistic temperatures wi f':j wij where­
as for ultrarelativistic temperatures there is an 
additional factor of order ln ( a.lm/3), where a 
"' 1. Thus, it is convenient to seek a solution of 
Eq. (30) in the region k f':j w f':J wz taking k = wz 
+ ~k, w = w z + ~w, and expanding in ~k and ~w: 

*In this case w2 = w~/ E(O) + k2 [8/5 -1/E(O)]. 

Re aet 1
1 = _ 8ne• ( f (ep) [ 1 -+- 2 e~ _ 3eP In eP+ p] d . 

ak w=k=wt w1 J ep m· p m p 
(39) 

It follows that the slope of the dispersion curve 
with respect to the line w = k (Fig. 2) decreases 
rapidly as the temperature increases 

tlw/ tlk = 1 - + m2 ~2 ln (2CVe!m~), (40) 

where C is the Euler constant. 
Equation (38) is used to determine the damping. 

Thus, for ultrarelativistic temperatures close to 
threshold ( ~k « wz) 

2 9 sh (w1[3 12) [ 3w1 . [ 3w1 w7f32 l'/•j = w J"Tm - . --- -L __,__ ----l r I ~ wi[3; 2 "2tlk In A I 2 ' 2 ~tlk In A ,-4- ~ 

3wt wtf3• ·' 2C Ve [ 
2 11 

xexp -ct:l.klnA+-4-) ], A=~· (41) 

At threshold ( w f':j k) the damping is exponentially 
small at any temperature. 

The damping is described by Eq. (41) for any 
density, in particular for wz » 2ep. At high den­
sities ( wz » 2m) the gas is always ultrarelativ­
istic. * To analyze the damping far from threshold 
we use the fact that the dispersion curve approaches 
w = k in the ultrarelativistic limit. For arbitrary 
w we write k = w + ~k. Using Eq. (39) with Eq. 
(30) we can express ~ as a function of w 

l'>.k - w•- w7 2 - 8 2 ~ f (cp) (1 ' 2 e~ 3ep I cp+ p)d 
w- 2 'Ws- J"Te -e- ~- m• --p n-m- p. 

w, p 

(42) 

Since w~ is of order wUm2{32 » w~, Eq. (42) 
gives the dispersion curve up to frequencies of ap­
proximately wz lm/3 » wz. In the region wz « w 
« wz lm/3 the damping is given by 

- _.:!.._ 2(l2 _s _ol_p_ --"-s _L 2 I " ~" 2 h ( ~/2) [m•~zw2 'm•~zw2s ,.,z~z)'/, 1 
r - 48 wm f' W[3/"2 "2.W2 I \ ~ + -4- + 

[ 1 m2[32w~ w•[3• J •;,] 
x exp - \ ~ + -;r-. . 

and ceases to be exponentially small only when 
w ,... wz lmf3; however, it is still rather small: 
ylw,... m2{32 « 1. 

(43) 

When k » w and m/3 « 1, in the classical limit 
the quantity Im El coincides with the results of ref­
erence 1. The oscillations are strongly damped in 
this case. 

*The limiting momentum for a degenerate gas p0 is high 
when wz = 2m:· this momentum is given by p;/m 2 = 9rr/2e2 » 1. 
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8. At high densities and temperatures the lon­
gitudinal oscillations can be damped as a result of 
pair production (Fig. 1b). The dispersion curve 
for the longitudinal oscillations must intersect the 
line w2 =4m2 + k2 (cf. Fig. 2) for this to occur. 
To analyze the pair-production damping we calcu­
late Re El for an ultrarelativistic Boltzmann elec­
tron gas by means of Eq. (10)* 

' v 2 .] , m 2 + e2 (k2 -w2)/2ro In ~ e2- m 
-r V c,2 - m• m , 

2 

where 

m~~ 1. (44) 

It follows from Eq. (44) that on the curve w2 

=4m2 + k2 

Reet = 1- 4nztr· [Y~Ink+ V~- I]. (45) 

In particular, as k- 0, Re El - 1- 7TNe2,B/3m. 
At high densities N > 1033 cm-3, ReEl can van­

ish. When k increases, the function 1- Re El de­
creases monotonically at threshold, corresponding 
to the intersection of the curve w2 =4m2 + k2 with 
the dispersion curves for all high densities N. 

The behavior of the dispersion curve close to 
threshold can be described approximately by ex­
panding the relation El( w, k) = 0 in powers of 
~w = w - w0 and ~ = k- k0, where k0 and w0 

define the point at which the dispersion curve in­
tersects the threshold w~ =4m2 + k~. By defini­
tion El( w0, k0 ) = 0 so that 

llw - I act I act ) (46) 
llk - - \ 7fk aw .,,.k, . 

The derivatives which appear here can be com­
puted from Eq. (44): 

ot.l I [3Vk~+4nz2 ko+ Vk~+4m2 7fk = 4.n: N e2 ~ 4 In ----;;2,.:.:---
~.~ ~ nz 

1 3 1 
- 4k0m2 - k~ ' 

;--­

ae/ r =- 4nNe•;3 [--1_ln ko+ L k~+4m2 
oro "'•· 1<, kg k0 2m 

I l' k2_:_4 2 J - 4m'l ,' o · m · 

(47) 

(48) 

*The real parts of E' and Et were computed exactly for a 
Boltzmann gas. Equation (44) is obtained as a limiting case of 
the resulting complicated expressions, which are not given here. 

When k0 « m we have ~w = ( 3k0 I 40m) ~k. 
When k0 »2m, we have ~ = ~w. The approxi­
mate behavior of the longitudinal dispersion curve 
at high densities and temperatures is shown in 
Fig. 2 (dashed line). 

The damping factor close to the pair-production 
threshold can be found easily from Eqs. (27) and 
(30):* 

'l'pai~ _!_ e2 llw l v-
2m 32 m ' 

'r~air 2e2 11 /8 w (m )'It 1 
~c--; = 3 v m k, ln0.37 kofm • 

We note that, in contrast with Cerenkov damping, 
the pair-production damping vanishes close to 
threshold not exponentially but as -../ ~w . 

9. We now consider the transverse plasma os­
cillations. Separating the real and imaginary parts 
in the transverse dispersion equation 

(50) 

we obtain for weak damping 

ro2 Re r:/ = k2 , (51) 

It follows from (51) that k2 « w2 corresponds to 
Re Et « 1. In other words, the frequency w must 
be close to the plasma frequency w0 [ Eq. (13)] if 
the spatial dispersion is to be weak. 

At frequencies far from the plasma frequency 
spatial dispersion is important only at relativistic 
temperatures. If we assume that Re Et is approx­
imately unity so that w ..... k, we can write in ac­
cordance with Eq. (51) w = k in Eq. (10), the ex­
pression for Et. Thus we find 

w• t 
~/ (ro, ro) = 1 - w" , ~ f (c ) Wi = 4:rt e2 __ P_ dp. 

eP 
(52) 

In the ultrarelativistic limit w~ is % times 
larger than w~. At low densities ( w~ «4m2 ) the 
dispersion curve for the transverse oscillations 
lies inside the region in which there is neither 
Cerenkov nor pair-production damping (cf. Fig. 2). 

Pair-production damping appears at high den­
sities. To analyze the spectrum of transverse os-

*The temperature effects contained in Eqs. (28) and (29) 
reduce the damping to some extent; however, this reduction is 
small for a Boltzmann gas because the corresponding terms con­
tain the small factor exp (f.L/3) « 1. These terms, which are 
proportional to {3', are omitted in Eq. (49). It is also easy to 
write general formulas for an ultrarelativistic Boltzmann gas by 
dividing Eq. (27) by aE;aw from Eq. (44). For a degenerate 
gas the contributions of Im E~air and Im 8E~air are of the 
same order of magnitude and decrease together for f.L > w/2 + K, 

whereas for w/2 > f.L + K we have Im E~air = Im 8E~air· 
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cillations we calculate Re Et by means of Eq. (10) 
for m{3 « 1, w{3 « 1, kf3 « 1: 

Re e1 = 1 - w;/w2 -+(el-l) (1 - k2/w2), (53) 

where Re EZ is given by Eq. (44). 
The dispersion curve for the transverse oscil­

lations is obtained from Eq. (53): 

el = 3- 2w;/(w2 - k2). (54) 

It is apparent that Eq. (53) and the curve w2 =4m2 

+ k2 can intersect only for a limited range of den­
sities 

1 < w~/4m2 < 3/ 2• (55) 
If the second inequality in (55) is not satisfied the 
dispersion curve lies above w2 =4m2 + k2 every­
where, that is to say, it lies in the region in which 
the oscillations are damped by pair production. 
Then, for weak spatial dispersion ( k « w), using 
Eqs. (28) and (51) we find 

rt . /w = _1: e2 VI- 4m2jw2 (1 + 2m2/w2). (56) 
p~ u 0 0 

This result corresponds to weak damping. 
An approximate analytical solution of Eq. (54) 

can be found at high frequencies. We seek a solu­
tion of Eq. (54) in the form w2 = w~ + k2 where 
w~ >4m2 and k2 » w~. Then 

el = 1 - (w~/k2) ln(k2/w~) 

and for values of k/ Ws which are not excessively 
large, the third term in Eq. (53) is approximately 
( wU2k4 ) w~ ln ( k2 I w~) i.e., one order higher than 
the second term. Writing EZ ~ 1 in Eq. (54) we ob­
tain wt = w~, i.e., for the accuracy required here 
we can use Eq. (52). In this case the damping due 
to pair production is 

. '!_pair=~--~ 1-~ 1 + ~ . 1 
2 w2 v 4 2 ( 2 2 ) 

(J) 12 w2 w~ w~ . 
(57) 

The temperature corrections oyhair given by (29) 
are small for an ultrarelativistic Boltzmann gas. 
For f..lf3 « 1 these corrections are proportional to 
{3~; when w{3 » 1 they are exponentially small. 

{).,t 2 :rrw2 ( ? z v 4 " _'_!>air __ ~ _t 1 + -m ) 1 _ __l!l__ 2g2 f r:1---""" I 
w - 12 w2 w•' w• Wt, or wl-' ~ . 

t (58) 

Equation (57) is valid for a degenerate gas when 
f..! + K < w/2; when w/2 + K <f..! the damping van­
ishes. 

10. We discuss further the possibility of real­
izing the inequality Re Et > 1 for the transverse 
oscillations. We consider the limiting case Re Et 
» 1 or, what is the same thing, k2 » w2• It fol-

lows from Eq. (10)* that for k2 » 4€2 

A w2' 
eJ = 1 + w•k• ( 1 + 3 k2) , (59) 

A = 16:rte• \' p• f (ep) dp. (60) 
3 J eP 

The condition Re Et » 1 is then actually possible 
when A » w2, k2, i.e., at very high densities. Thus, 
for a nondegenerate ultrarelativistic electron gas 
A = 32we2N/ {3 and for a degenerate gas, A = 8we2Np0 

where Po is the limiting momentum at the Fermi 
surface. 

In this case the transverse oscillations are 
damped because of the inverse Cerenkov effect. 
This damping is exponentially small ( kf3 » 1) 
for a nondegenerate electron gas [ cf. Eq. (24)] 

r /w = ...!.. n (Re el) k3R3e- Bk/2 
cer 128 t-' • (61) 

A particle moving in a medium with Et > 1 will 
experience Cerenkov losses; in the region in which 
the medium is transparent these losses are given 
by the well-known expression (cf. reference 6): 

t- 2 q3dq 2 ' 2 1 00 00 [ 

W - 2e ) wdw 0~ q• + w•;v• 6 q 1 w ( & 

(62) 

where v is the particle velocity and wt is the en­
ergy loss per unit path of the particle. Making the 
substitution Et = 1 + A/ w2k2 throughout, we have 

WI= e• 
2v2 VA 

Wmax 

\ wdw (w2 - w2) J max ' 
0 

(63) 

where w~ax = v2..fA. Thus, a wide spectrum is 
radiated (up to w = Wmax>· Finally, after inte­
grating over frequency we have 

(64) 

11. The static magnetic susceptibility of a rela­
tivistic electron gas has been investigated by Silin 
and Rukhadze. 11 The dielectric constant found in 
the present work can be utilized to find a more 
general expression that takes account of the posi­
tron contribution. We shall use for x « 1 the 
definition 

w2 w2 
x.(O)=k2(el-el)=7if.(el-1) for w, k-.0. (65) 

Using Eq. (10) we have 

4 e•:rr r n; + n; 
'X. = 3 (2n) 3 J e dp, 

0 p 

(66) 

*When w2 « A/k 2 « k 2 the second term in the round bracket 
can be neglected. 
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which differs from the result obtained in reference 
11 only in that there is an additional term ni). In 
particular, at equilibrium with respect to pair pro­
duction (J-L :::::c- 0) 

(67) 

A similar modification, specifically, a term with 
np, must be introduced into the expression for the 
shielding radius for a static field (Debye radius) 
found in reference 1: 

-2 _ 2 \ 2 ( dn-p dnt ) 
r n - - 4:n:e J (2n)" dp deP + lie;,' . (68) 

In particular, when J-L = 0 

(69) 

This dependence of the Debye radius on temperature 
has been indicated by Fradkin. 7 

I am very much indebted to V. P. Silin and A. A. 
Rukhadze for acquainting me with the contents of 
their book on the effect of spatial dispersion in 
plasmas and for many valuable discussions. 
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V. L. Ginzburg, E. L. Feinberg, and E. S. Fradkin 
for their interest in this work and for useful com­
ments. 
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