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The equation for the correlative distribution function with screening of the interaction of 
charged particles taken into account, which was obtained earlier by Klimontovich and Temko, 
is here solved. The correlative function is found. The collision integral is obtained for a 
system consisting of several types of nonrelativistic charged particles; this integral is 
suitable in particular for the description of states very different from the thermodynamic 
equilibrium state. It is shown that the screening of the Coulomb interaction is described 
by a complex permittivity tensor. This has made possible an extension to the case of rela
tivistic distributions and the obtaining of the relativistic collision integral with the screen
ing of the fields of the charged particles taken into account. 

l. Klimontovich and Temko1 have extended results 
obtained by Bogolyubov2 to the quantum case and 
have shown that the collision integral Ja (Pa) for 
charged particles is determined by the formula 

N a. i \- dk { ( lik) ( lik) yla. = 2/i ~ (2n)• ha. k, Pa. + 2 -ha. k, Pa.- 2 

-h>. (-k, Pa. +fin+ ha. ( _ k, p'"- ¥)}. (1.1) 

where Na /V is the number of particles of type a 
per unit volume, and the function ha(k, Pa) is 
connected with the correlative function ga{3 
(ra-r{3, PaoP{3) bytherelation 

(1.2) 

Here 

~ eae8 
v (k) = eikr dr -' . 

a{3 ~ r 

Furthermore, according to the work of Klimonto
vich and Temko1 one has the following equation 
which determines the correlative function: 

N'"N:< , 1 {· (kp'" kp~) y y va.~ (k) Ga.0 (k, p'", pB) = r; m6 ma. - m{3 

I p 1 u (k) ( N a. N (l 
1 kp /m -kp 1 m /\Va.a. Vf3(3 k) \TV 

a. C1 [3 I {3 I 

X !fa. (Pa. + nk/2) f!3 (p13 -lik/2) 

-fa. (p(l -l'ik/2) f(l (p(l + hk/2)1 

+ (N'"IV) v"'" (k) Ita. (p'" + lik/2) 

-fa. (Pa. -lik/2)1 hf3 (- k, PB) 

- (N{31 V) vB{3 (k) !f(l (P(l + nk! 2) 

The symbol P means that here and in what follows 
the singular integrals are to be taken by using the 
principal value. 

In the paper of Klimontovich and Temko1 this 
equation was not solved, although it was shown 
that such an equation must lead to screening of 
the interaction of the particles at large distances. 
Screening of the Coulomb interaction in the quan
tum collision integral was obtained by Konstantinov 
and Perel •3 in the case of states differing slightly 
from the state of thermodynamic equilibrium. 
Here, by solving Eq. (1.3), we shall obtain a col
lision integral that is valid for the description of 
states decidedly different from the equilibrium 
state. In the classical theory the analogous treat
ment for collisions of electrons with electrons has 
been carried out in papers by Balescu4 and Lenard. 5 

2. We introduce functions of the complex vari
able w, 

1 j dpa. 
H (w, k, ±) = ---: ~ _ kp ;m h'" (± k, Pa.), 

2nt a. w a. a. 
(2.1) 

which have no singularities in either the upper or 
lower half-plane, but which have a discontinuity on 
passage across the real axis. On the real axis the 
limit H+ of the function analytic in the upper half
plane and the limit H- of the function analytic in 
the lower half-plane obey the Sokhotskii-Plemel' 
relations 

- f13 (p0 - lik /2) 1ha.(k, Pa.)} . (1.3) 
- . "(. kpa.) 1 + l Jtu (J) - ma. { . (2.2) 
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From Eq. (1.3) we have 

2rriv""(k)N"/V[ ( hk) _ (kp" 
h" (k, p") =he (kp"/ ma, k) f" Pa + 2 F ma ' k,-) 

-fa (Pa- ~k) p- (~aa' k, + )] + Va~(k) ~a [fa (Pa+ ~k) 

(2.3) 

where E- and F- are the limits on approaching 
the real axis from below of the functions 

2rri 1 ( e (oo, k) = 1 +---,; [F (oo, k, +)- F (w, k,-) , 2.4) 

1 \ dpa N a ( hk) 
F(oo,k, ±) =2rri~~w-kpafma"aa(k)vfa Pa± 2 · 

a (2.5) 
It follows from Eqs. (1.3) and (2.3) that for the 

solution of the system of singular integral equa
tions (1.3) it is sufficient to determine the func
tions H ( w, k, ±). The corresponding equations 
for the determination of these functions can be 
obtained in the following way. Let us multiply 
Eq. (2.3) by o ( w- kpcdma) and integrate over 
Pa· On summing the result of the integration 
over a, we get 

[W(ro, k, +)-W(oo, k, +)1 e- (oo, k) 

- W (oo, k,-) [e- (oo, k)- e+ (oo, k)1 

= (2ni/ !i) [f+ (oo, k, -) p- (oo, k, +) 

-f+ (oo, k, +) r(oo, k,-)1. (2.6) 

We get a second equation by changing the signs 
of w and k in Eq. (2.6): 

[W (oo, k,-)- W (ro, k,- )1 e+ (oo, k) 

-W(oo, k, +) [e-(oo, k)-e+(oo,k)1 

= (2ni/li)[f+(oo,k,-)r(oo, k, +) 

- f+(oo, k, +) p- (oo, k,- )l. (2.7) 

The system (2.6) and (2. 7) enables us to determine 
the functions H. 

To solve (2.6) and (2. 7) we subtract one equa
tion from the other. The result is the following 
relation: 

[W (oo, k, +) -H-(w, k,-)1 e-(oo, k) = [W(oo, k, +) 

- W (oo, k,-)]e+ (oo, k). (2.8) 
The left member of this relation is analytic in the 
lower half-plane of the complex variable w, and 
the right member is analytic in the upper half
plane. The analytic function with zero disconti
nuity on the line that separates the regions of ana
lyticity is obviously analytic in the entire plane of 
the complex variable. The condition that the dis
tribution functions go to zero at infinitely large 
momenta means that both the right and left mem
bers of Eq. (2.8) go to zero at infinity, and from 
this and the condition that 

e± (oo, k) =f=O (2. 9) 

we get 

H (oo, k, +) = H (w, k, -) := H (w, k). (2.10) 

The absence of zeroes of the functions E±( w, k) 
in the regions in which they are analytic has a 
simple physical meaning. The fact is that the func
tion E ( w, k) is connected with the complex per
mittivity tensor Eij(W, k) of the plasma by the 
relation* 

k 2 B (w, k) = k;kjBij(W, k). 

In this connection, the condition (2.9) corresponds 
to the absence of undamped and increasing self
consistent oscillations of the density (so called 
longitudinal plasma waves t) in the state in which 
the distribution of the particles is described by 
the functions fa<Pa ). In other words, the condi
tion (2.9) is the condition for the stability ofthe system 
of charged particles against perturbations associated 
with changes of the charge density. In what follows 
it is assumed that this condition is satisfied. t 

Equation (2.10) enables us to write Eq. (2.6) 
in the following form 

H- (OJ, k) H+ (w, k) f+ (w, k, -) + f+ (w, k, +l 
e (w, k) e+ (w, k) 2e+ (w, k} 

p- (w, k, -) + F-(w, k, +) 
2e (w, k) 

f+ (w, k. -) + f+ (w, k, +l- F- (w, k, -)- F-(w, k, +l 
2e+ (w. k) e (w, k) (2.1l) 

This equation determines the discontinuity of the 
function H/ E on the real axis of the plane of the 
complex variable w. As is well known,6•7 the prob
lem of the determination of an analytic function Ill 
which goes to zero at infinity from its discontinu
ity a on a path L is solved [as can be seen with
out difficulty from the Sokhotskii-Plemel' rela
tions of the type of Eq. (2.3)] by the formulas** 

*Regarding the complex permittivity tensor of a plasma see 
reference 9. 

tThe damped plasma oscillations which are often considered 
correspond to zeroes of the analytic continuation of the func
tion E:(w, k) to adjacent sheets of the complex variable w. 

+We note that for the obtaining of the collision integral it is 
sufficient for the condition (2.9) to be satisfied on the path of 
integration of the formulas (2.1) and (2.5). The condition then 
corresponds to the absence of self-consistent oscillations ca
pable of being absorbed and emitted by particles with the dis
tributions fa,. 

**Furthermore, 
1 1 (' dz' 

l]!+(z) = 2 a(z) + 2rri \ z'-za(z')' 
L. 

1 1 (' dz' 
1}!-(z) = 2 a (z) + 2rri .\ z'-z a (z') 

L 
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m+ (z)- m- (z) = a (z) on L, 21 (z) = .J._. \ dz'a (z') . 
2n t j z'- z 

L 

Therefore the solution of Eq. (2.11) can be written 
in the following form: 

H (w, k) = _ F (w, k, +) + F (w, k, -)+ __!_ \' ~ 
B(w, k) 2B~w,k) · 2ni.\w'-w 

xf+ (w', k, -) + p+ (w', k, +l- p- (w', k, -)- p- (w', k, +l 
2B+(w',k)B (w',k) 

(2.12) 

3. Equations (2.12), (2.3), and (1.3) enable us to 
write an explicit expression for the correlative 
function in a system of charged particles. We note 
that a knowledge of this function can be necessary, 
for example, for the determination of the energy 
of the system of particles in a nonequilibrium 
state. It is obvious that now we can also write an 
expression for the collision integral. We note that 
Eq. (2.11) suffices for this purpose, because Eq. 
(1.1) contains the difference ha(k, Pa) 
- ha (- k, Pa). Substituting the expressions 
obtained in Eq. (1.1), we find 
N N ' 
-": J ( ) __ 'V " N ~ \ dp" , , 
V " P" -- .LJ Y Y ~ (2nfi)" dp~ dp[lwa.f> (p", Pa.) 

r 
X b (p~ + p~- p"- p0) b (p'; I 2m" + p~2 I 2m~ (3 .1) 

- p~ I 2m"- Pf, /2mr>) [/" (p") f~ (p0)- f" (p~) f~ (p~) J, 

, 2nv~~ ( I Pa. -; P~ I ) 
wa.,G (p", Pa.) = . , . (3.2) 

ne+(Pa.2 -p~ p~--p")e-(p';-p~ p~-p") 
\ 2fima. ' fi 2fima. ' -fi-

Wenotethat (3.2), like the original (1.3), has 
been obtained on the assumption that the interac
tion is weak. This means that for very small im
pact parameters Eq. (3.2) must not be used. In the 
case of states only slightly different from the state 
of thermodynamic equilibrium, for which we can 
use the linear approximation, Eq. (3.2) goes over 
into the formula of the paper of Konstantinov and 
Perel'. 3 

In the classical limit, which corresponds to 
sufficiently distant collisions, Eq. (3 .1) takes the 
form 

Iii ( ) _ 1 dk kikinv~,3 (k)/\ (kv"- kv13 ) 
a.(> v"' v J3 - .\ (2 )" -,.-c--:c:.__~---.::..__----"::.:.... 

• n Bel (kv "' k) Bel (kv "' k) ' 
(3.4) 

where Eel is given as a function of the complex 
variable w by the formula 

In the special case of electron-electron colli
sions the formula (3.4) corresponds to the formula 
obtained by Balescu and by Lenard.4•5 We note 
that in Eq. (3 .4) the integral diverges at large 
values of k, which correspond to small impact 
parameters; this is due to the fact that here the 
classical approximation cannot be applied, as it 
is in the passage from Eq. (3.1) to Eq. (3.3). The 
necessity of cutting off the integral in Eq. (3.4) 
can be connected with the lack of validity of per
turbation theory, which with the Boltzmann dis
tribution begins to fail at the impact parameter 
Pmin"' e2/KT. 

Finally, if we neglect the difference between 
Eel and unity, the expression (3.3) goes over into 
the collision integral for charged particles in the 
form that was given by Landau. 8 Here also at 
large impact parameters one must resort to cut
ting off the integral, which converges automatic
ally in our treatment. The convergence is due to 
the consistent inclusion of effects of polarization 
of the medium as described by the permittivity. 

4. The results of the preceding section regard
ing the collision integral mean that in calculating 
collision probabilities we must use instead of the 
Coulomb field the expression for the field of a 
particle in a plasma, with the complex permittiv
ity taken into account. This is particularly clear 
from Eq. (3.2). Here the value of the complex 
permittivity corresponds to the first approxima
tion of perturbation theory, and in the nonquantum 
case, to which we confine ourselves from now on 
is given by9 ' 

. . 4n e; N ,_ ~· d p,_ 1 iJf a. 
e;;(w, k) = b;i -t- L -- -v- --k- Va./0 a w w~va Pa 

x(bit~l-~]+ k~~). (4.1) 

Here, as before, we are dealing with analytic func
tions that have cuts along the real axis. 

Only the longitudinal interaction plays any part 
in the nonrelativistic approximation, and therefore 
in the formulas written above it is the quantity 
kikjEij that appears. In the nonrelativistic case 
this is no longer true. We shall now proceed to 
the consideration of this case. Here we shall not 
deal with the equation for the correlativ~ functions, 
but shall at once take into account the polarization 
of the medium, and use the permittivity for the de
termination of the field in the plasma. 

It is clear that for what follows we must define 
the probability of collision between two particles. 
For this we need to know in the nonquantum limit 
the quantity 

lim wa. 13 (p • p + nk) n; 2 
fi->0 a a ' 
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where w a{3 is the probability of a collision of par
ticles a and {3 with change of the momentum of 
particle a from Pcv. to Pcv. + tik. This quantity 
serves in the following way to determine the ker
nel of the collision integral, which obviously is 
still of the form (3.3): 
ij \ dk 

I a0 (v a.' V ~) = J (Ln)" k;k/J (kv a 

- kv ~) limw"~ (Pa.' Pa. + lik) n I 2. (4.2) 
fi--+0 

Equation (4.2) can easily be obtained by going to 
the limit ti = 0 in the quantum collision integral. 

For the calculation of the scattering probabil
ity we must determine the fields. Using the gauge 
in which the scalar potential is zero, we can write 
the following equations for the Fourier components 
of the vector potential of the field produced by the 
uniform motion of a charge ef3 with the velocity 
Vf3 in a medium with the complex permittivity ten
sor Eii(w, k): 

aii (kv~, k) A1 = {(kv0) 2 c-2eii (kv0, k) 

-k2b;1 + k1k1) A1 =- 4nc-1e13'v~, 

from which we have 

(4.3) 

(4.4) 

According to M.6ller's paper, 10 with our gauge 

~~wa.~(p", p" + !ik)li/2 ,= nle"c-1v"AI 2 • (4.5) 

Therefore for the collision integral we get 

if (lmea. e/3)2 \ dk r.(', (va., v~) = -c-.- J (2n)" nk;kjb (kv"- kv/3) 

(4.6) 

fu the special case of an isotropic distribution 
the complex permittivity tensor has the form 

E;j ( w, k) = gtr ( w, k) ( b11 - k-2k;k1) + k-2k1k1e1 ( w, k). (4. 7) 

Here we have, according to Eq. (4.1)* 
_ 1 2ne~ (' dp" at a N, 

8 tr (w, k) = 1 + '\:~ -k2 \ ----=---k [k [v"kj] -ap -v, L.Jw .)w va a 
a 

Then the formula (4.6) can be simplified and 
takes the following form: 

. \ dk Jtk.kj 
/~8 (v<>v0) = (4ne<>ell)2 J (2n)" T.b (kv"- kv13) 

I 

1 k2v"v13 - (kv")" 12 

X e1 (kv",k) + (kva.)2 e1r(kv",k)-k2c2 • 

(4.8) 

fu the limit El = Etr = 1 Eq. (4.8) goes over into 
Eq. (22) of the paper of Klimontovich, 11 and there-

*[k(va.kl] = k x [va. x k]. 

fore it corresponds to the relativistic collision in
tegral of Belyaev and Budker. 12 

The integral in Eq. (4.8) must be cut off at large 
k for the same reasons as in the nonrelativistic 
treatment. At small k, corresponding to large im
pact parameters, the integral converges. We shall 
show in particular that in the case of relativistic 
temperatures the longitudinal and transverse per
mittivities lead to cutting off at distances of the 
order of the Debye radius. For this purpose we 
note that in the region of small values of kv a we 
can use for the permittivities the approximate 
formulas 9•13 

e1 ~ (krDt2 , etr ~ ivT I (kv") krt. 

where VT is the thermal velocity. The formula 
for El corresponds to the Debye screening, and 
the formula for Etr corresponds to the region of 
the anomalous skin effect, for which Etr(w, k) 
"' i/wk. 

It is clear that under conditions in which VT 
is close to the speed of light, these approximate 
expressions for the permittivities lead to a cut
ting off at impact parameters of the order of the 
Debye radius. If, on the other hand, VT « c, then 
unlike the longitudinal permittivity, which leads to 
a cutting off of the logarithmic divergence at the 
Debye radius, the transverse permittivity cuts 
off the divergence at parameters "' ( c/vT) rn. 
Under these conditions, however, the contribution 
of the transverse interaction to the collision in
tegral is only a small correction. Therefore for 
the Boltzmann distribution there is no large error 
in cutting off both the transverse and the longitud
inal interactions at the Debye radius. 

We note that the kernel (4.8) can be used not 
only in the case of an isotropic distribution, but 
also in the case of a small departure from iso
tropy. For this purpose it is assumed to be pos
sible to linearize the collision integral. fu the 
case of a decidedly anisotropic distribution, such 
as occurs, for example, in the collision of beams 
of charged particles that are neutral taken on the 
whole, it is necessary to use the collision inte
gral with the kernel (4.6). 

Note added in proof (May 12, 1961). It was 
stated above that in Eq. (4.6), as indeed always 
when a collision integral of the Landau type8 is 
being used, it is necessary to cut off the integra
tion for large k. This shortcoming is absent for 
the ordinary Boltzmann collision integral, which 
holds also in our case and is written in the form 
(3.1) with the energy of the particle replaced by 
its relativistic value. One then has for the tran
sition probability for distributions independent 
of the spin the following expression 
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' ' 2:n: (4:n:eaeB)2 

w (piX, p~; PIX' P(l) = T 4E" (piX) EIX (p~) Ell (p~) E(l (p~) 

X {co [p:p~ + p~p~]-+ bir ([Ea(P~)- E" (p")]2 - C2 [p~- PaJ2l} 

~- {c2 [p'Jp& + p~p~J-T {Jli ([Ell (p~)- E~ (p~)]2- c2 [p~ -p~]2)} 
-1 ( E~ (p/l)- Eil(p~) P~- p~) 

xaii 1i , 1i 

. -1 ( EIX (piX)- E" (p~) PIX- P~) 

.<a,z li ' -li-; . (4.9) 

In these formulas one must use the quantum ex
pression for the permittivity tensor. 
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