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The procedure for calculating electromagnetic corrections to weak interactions is studied. 
It is shown that at present there is no basis for asserting that the coupling constants of vari­
ous weak interaction processes are equal or unequal with an accuracy better than electro­
magnetic. 

A number of papers appeared in recent years 
containing calculations of electromagnetic correc­
tions to the simpler weak interaction processes 
( f.l and {3 decays 1- 5 ) • The total weak interaction 
Lagrangian is usually taken in the form 6 

(0.1) 

where is a parity-nonconserving charged current: 

j = (eOv) + (;tOv) + (iiOp) + ... , 
O~" = r~"a+, a±= +<1 ± ir"). (0.2) 

Afterwards one proceeds in the standard manner 
used in field theory to calculate corrections to the 
probabilities and cross sections obtained from Eq. 
(0.1) due to electromagnetic 

L, = e ~ : c" Ac" : + . . . 
" 

and strong ( n stands for nucleon) 

Lg = g: ny5mt: + ... 
interactions. 

(0.3) 

(0.4) 

When this is done one studies, in effect, two dif­
ferent problems. The first problem consists of 
finding more accurate expressions for angular and 
energetic distributions in f.1 and {3 decays with 
electromagnetic corrections taken into account. 
To the study of this problem are devoted the papers 
of Behrends, Finkelstein, Kinoshita, and Sirlin, 1 

Durand, Landovitz, and Marr,2 Berman, 4 and Kuz­
netsov,3 in which, however, bremsstrahlung terms 
connected with recoil are not fully taken into ac­
count. (The corresponding correction terms for 
f.1 decay were obtained, in effect, in Kuznetsov's 
second paper. 7 ) 

The second problem consists of the determina­
tion of the renormalization of the coupling con­
stants of the various weak interaction processes 

as a consequence of the interactions (0.3) and (0.4). 
Gell-Mann and Feynman have proposed the con­
served vector current hypothesis, 6 according to 
which the vector part of the weak interaction does 
not undergo renormalization due to strong inter­
actions. In the papers of Goldberger and Treiman 
and Chou Kuang Chao8 the magnitude of the renor­
malization due to strong interactions is discussed 
for the axial vector current in {3 decay and other 
processes (its value is taken from experiments 
on the asymmetry in {3 decay; see, e.g., Alikha­
nov9 ). (The observed deviations from the V-A 
scheme (V-A - V -A.A) in {3 decay may also be 
explained within this framework by taking into ac­
count only electromagnetic corrections with appro­
priate form factors. This means that experiment 
could be consistent with the absence of renormali­
zation of the axial vector current due to strong in­
teractions. In this connection one should also note 
Nambu's work. 10 ) 

It is also known that the {3 decay of mirror nu­
clei ( o+- o+ transitions) is due to only the vec­
tor part of the weak interaction, which, as indi­
cated, is not renormalized by the strong interac­
tions. In these decays, as in f.1 decay, the basic 
weak interaction is deformed only by electromag­
netic corrections. The coupling constants in these 
cases turn out to be very close in magnitude. This 
raises the question of comparing the electromag­
netically renormalized coupling constants in these 
processes. The near equality of these constants 
has been discussed in a number of papers. 1•2•5 

The present work is devoted to an analysis of 
the starting assumptions that form the basis of 
such a comparison. It turns out that in the frame­
work of contemporary field theory it is not possible 
to determine uniquely the renormalized coupling 
constants. In different processes these constants 
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may be determined only simultaneously with a cer­
tain (generally speaking arbitrary) normalization 
constant. At the moment it does not seem possible 
to establish a relation between the normalization 
constants in different processes. The gauge in­
variance property, contrary to the expectations 
of a number of authors, 1•2•5 does not save the sit­
uation. It follows therefore that a comparison of 
coupling constants for the above mentioned proc­
esses to an accuracy better than electromagnetic 
makes no sense. 

Below we formulate and prove the concept of 
renormalization for the class of problems under 
consideration. We then prove the gauge invariance 
of the method of calcu~ation used. In the end we 
consider the implications of the indicated facts for 
J.L and {3 decay. 

1. RENORMALIZABILITY 

It is known that the four-fermion interaction 
(0.1) is not renormalizable, although for observ­
able processes the inclusion of terms of higher 
order in G does not, apparently, change the V-A 
form. 11 Therefore a consistent discussion of terms 
of higher order in G is at this time simply impos­
sible.* As a result we are forced to consider a 
semi-phenomenological theory in which only first 
order terms in G are kept, but all terms of the 
perturbation theory expansion in e and g corre­
sponding to Eqs. (0.3) and (0.4) are taken into ac­
count. The justification of this approach is usually 
found in the extraordinary smallness of G. 

We shall show that such a theory is renormal­
izable in the conventional sense. This means that 
the divergent expressions that appear in the course 
of calculations using perturbation theory can be 
eliminated by introducing into the Lagrangian 
counter terms of the type (0.3), (0.4), (0.1) and of 
the type of the free field Lagrangian or, which is 
the same, by renormalizing the masses and wave 
functions of the particles and the coupling con­
stants of the interactions. 

As is known, by an appropriate redefinition of 
the T products at the equal argument points, it is 
possible to reduce these infinite renormalizations 
to finite arbitrary multiplicative factors in the in­
dicated quantities and in the simpler Green's func­
tions related to them. Below, when referring to 
operations with divergent quantities, we shall un­
derstand operations with finite (defined up to a 
constant) quantities that result after the T prod-

*It should be noted in addition that so far no processes of 
higher order in G have been observed. 

FIG. 1 

ucts are redefined. One may also consider these 
divergent quantities to be regularized by the in­
troduction of an appropriate cut-off. Then the 
above-noted finite arbitrariness in the determina­
tion of the coupling constants and particle masses 
corresponds, in part, to the circumstance that 
there is no need to choose the cut-off momenta to 
be the same in different, unrelated to each other, 
Feynman diagrams. 

We shall carry out our considerations on the 
simplest examples of J.L and {3 decay; following the 
presentation in the book by Bogolyubov and Shir­
kov (Chap. 4). 12 We shall restrict ourselves in the 
matrix elements to only first order terms in G 
arising from the Lagrangians 

L~'- = G:(!J:Ov) (vOe):= G:(f!Oe) (vOv):, (1.1) 

L(l = G:{nOp) (vOe):= + :(n(Gvr~'- + GAy~-'iy 5)pJ (vy~-'a+ e): 

(Gv = GA =G). (1.1') 

As indicated above we will, however, take into ac­
count all terms of the perturbation-theory series 
corresponding to Eqs. (0.3) and (0.4). After the 
usual renormalizations of the coupling constants 
e and g, and the masses and wave functions of 
the particles, there remains in such a theory only 
one (logarithmic) divergence, corresponding to 
the diagram of Fig. 1. This is easily established 
by the conventional counting of the powers involved 
in the diagram. 

For such G-vertices we can write an equation 
which, in terms of Feynman diagrams, corre­
sponds to Fig. 1: 

- iS~'-= G : (P:Fe) (vOv) : = G : (~Oe) (vOv) : 

+ G : (r;,Te) (vOv) :, (1.2) 
. 1 - - 1 [- (G ~'-- ~sil = 2 : naP!lVoey : Fa~; yo = 2 : n vr 

+ GAy ~'-iy5) pi (vy~'- a+e) : + +: naPflVoey : Ra.(l; yo· (1.2') 

In other words 

Fa~= Oa.f3 + Tafl• 

F rx(l; yo= GOa.~Oyo + Ra{3; ·r5· 

(1.3) 

(1.3 ') 

Here T and R are contributions due to the strong 
and electromagnetic interactions. They are loga­
rithmically divergent. 

After some transformations, in which use is 
made of the operator structure of the strong and 
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electromagnetic interactions,* of the properties 
of direct products of operatorst (see, e.g., Slav­
nov and Sukhanov13 ) , and of the two-component 
nature of the neutrino, the divergent parts of R 
and T are isolated. In this way one obtains, as 
usual, 

(1.4) 

R(}.{o; 10 = [Gv (Zl- 1) r~-' + GAr~-'ir 5 (Z2- l)l(}.rjO-,s _J_ R~~~yS· 

(1.4'5 
Here Treg and Rreg are finite functions of the 
momenta and the renormalized constants e, g, m, 
M, Jl, etc. 

After introducing into the Lagrangian appro­
priate counter terms we find that the divergence 
under consideration leads to a multiplicative re­
normalization of the coupling constant G (the 
constants Gy and GA in {3 decay ):t 

Q-c,. ZG; (1.5) 

(1.5') 

It should be noted once more, that after the 
separation (1.4) of T ( R) into a regularized and 
divergent part there remains in the definition 
of Treg( Rreg) a finite arbitrariness, correspond­
ing to different possible choices of the subtraction 
constants. This arbitrariness corresponds to the 
finite multiplicative renormalization of the type 
(1.5). At that the constants Z and Z1 ( Z2 ) are in 
no way related to each other or to the analogous 
constants of other renormalizations ( electromag­
netic and strong). At first sight it seems that the 
situation is opposite in electrodynamics where the 
subtraction constant for the vertex diagram is re­
lated to the subtraction constant for the fermion 
self energy diagram as a consequence of gauge 
invariance. This contradiction with electrodynam­
ics is apparent only, the G-vertex diagram being 
only superficially similar to the vertex diagram 
in electrodynamics. This distinction will be dis­
cussed in more detail in the next Section. 

*For the here relevant most strongly divergent parts these 
interactions give direct products of the type (y"yiL) x (yiLy") and 
(yflyv) x (yvyiL) respectively. 

tThe following of them are of importance to us: 
Cf:'(y~I)Pa±) x (y/La+yayf3) = D±' (ylla±yayf3) (y1La+y~f3) 
= (yiL a±) (yiL a+) (C ± and D ± are certain numbers irrelevant for 
the calculations). 

lThis result may also be derived by writing the S matrix as 

S = T {[ 1 + i ~ La (x) dx] exp [i ~ dx (LJx) + Lg (x))]} 

and then computing its matrix elements as variational deriva­
tives with respect to appropriate fields. The electromagnetic 
and strong divergences are in that case separated from the di­
vergence in the G-vertex. 

Thus, after the renormalization of the coupling 
constants e, g, and G, the particle masses and 
their wave functions, the theory under considera­
tion contains no divergences. 

2. GAUGE INVARIANCE 

We have indicated at the end of the preceding 
section that the renormalization constants Z and 
Z1(Z2 ) are unrelated to each other or to the anal­
ogous constants for other electromagnetic or 
strong Green's functions (diagrams). In contrast 
to this in a number of papers1•3- 5 it has been in 
essence assumed that the constant Z is related 
to the renormalization constant for the fermion 
mass operator by a relation of the type of Ward's 
identity in electrodynamics. We shall now show 
that the requirement of gauge invariance in the 
processes under consideration does not impose 
any restrictions on the constant Z and that there­
fore the above indicated arbitrariness in the de­
termination of the constant Z persists. 

To prove this it is necessary to show that the 
procedure for calculating electromagnetic correc­
tions to weak interactions is gauge invariant. We 
shall show that the matrix element of the weak in­
teraction, including electromagnetic and strong­
interaction corrections, is after renormalization 
independent of the field intensity of longitudinal 
and scalar photons dz. A full proof of this asser­
tion is somewhat clumsy in perturbation theory; 
we shall therefore not present it but will limit 
ourselves to the consideration of only the terms 
of lowest order in e. The proof can also be car­
ried out with the help of contour integration. In 
that case one need only to repeat almost verbatim 
the corresponding discussion in the book by Bogo­
lyubov and Shirkov12 (Sec. 41). 

It is more convenient to give the proof for the 
j.!-decay process. The generalization to processes 
in which the contribution of the strong interactions 
is relevant presents no difficulty; we leave it out 
here only to avoid a greater, as compared to Jl 
decay, complexity. We shall write the weak inter­
action matrix element in the form 

- iSIJ. = G:(~Fe) (vOv):. 

FIG. 2 
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GF = G (0 + ~ e2nFn). (2.1) 
n;;.t 

Since we are concerned with a theory in which the 
electromagnetic renormalizations of the chargee, 
and the particle masses and wave functions, have 
already been carried out, it is sufficient in second 
order to consider only the diagram of Fig. 2, in 
fourth order the six diagrams of Fig. 3, * etc. 

In the series (2.1) the term of the 2n-th order 
in e is a polynomial of n-th order in dz: 

n 

Fn = ~ d7F ~k>. (2.2) 
k=O 

To second order in e we have 

p<t) _ 1 \ k p- k + IL q- k + m k 
1 - (2n)4 J 7li k2 - 2pk 0 k2- 2qk k2 dk. 

Here p and q are the momenta of the electron 
and muon respectively. Since in Eq. (2.1) F 
stands between the operators If!-' and 1/Je, which 
satisfy their respective Dirac equations, it follows 
that 

Fl11 = clo. 
Here C1 is a "divergent constant": 

1 \ dk cl = (2n)• J 7i4 • 

(2.3) 

An analogous discussion of the fourth order 
terms in e, when the Dirac equations for the elec­
tron and muon and Lorentz invariance are taken 
into account, leads to the result 

F~2> = F?] + FW = c~210, 
F~11 = C~1> 0 + C1Fi0>. 

(2.4) 

(2.5) 

Here C~21 and C~0 are "divergent constants." 
Substituting Eqs. (2.3)- (2.5) into Eq. (2.1) we 

find 

GF = G (0 + e2C1dt0 + e2Fi0> + e4d~C~2>0 + e4d1CtFi0> 

+ e4d1C~1>o + e4F~o> + ... ). 
Accurate to within terms of higher order this 
means that 

GF = G" (0 + e2Fi0> + e4F~0> + ... ) = G"F<o>. (2.6) 

Here G" is the weak-interaction coupling constant, 
renormalized by longitudinal and scalar photons: 

G" = G (I + e2C1d1 + e4C~2>d~ + e4C~1>d1 + ... ) . (2. 7) 

The function F0 requires further renormaliza­
tion, as stated in Sec. 1, however it no longer de-

*Throughout we make use of the renormalized photon dis­
tribution function 

vmn (k) = k-2d (k2) [gmn- k-2kmkn] + dlk-~km kn. 

vv v v vv 
AAAAAA 

a c d 

FIG. 3 

e f 

pends on dz. Consequently the dependence on dz 
is contained entirely in the renormalization of the 
coupling constant G. An analogous situation occurs 
in mesodynamics, where the renormalization con­
stant of the vertex operator including electrody­
namic corrections depends, as is easily seen, on 
dz. 

Consequently, in order that the observable 
quantities be independent of dz it is not necessary 
to impose any restrictions whatsoever on Z ( Z1 

or Z2 ) • This is independent of what gauge invari­
ant method is used to calculate other processes. 

In contrast to this, in electrodynamics the con­
dition of gauge invariance leads through the Ward 
identity to a relation between the normalization 
constants (or, which is the same, the cut-off mo­
menta) for different processes. A relation is also 
established between the vertex diagram and the 
self-energy diagram. In this Section we have 
shown that the weak interaction matrix element 
is gauge invariant by itself, without imposing any 
conditions on the normalization constant. There­
fore the normalization constant for the matrix 
element of each of the weak interaction processes 
is determined independently and represents an 
independent constant in the theory. 

3. DISCUSSION 

An elementary (but tedious) calculation of the 
matrix elements for !-' and f3 decay, including 
bremsstrahlung, results in formulas for the prob­
abilities of these processes of the type given in 
references 1-4 (including corrections due to re­
coil). These formulas, however, should contain 
additive terms corresponding to the finite arbi­
trariness noted above. At that it turns out, as 
was to be expected, that the parameters that char­
acterize the spectrum (such as the Michel pa­
rameter and the asymmetry parameter)· are in­
dependent of the normalization constant and are 
determined uniquely. At the same time the quan­
tity G is determined from the lifetimes of the 
corresponding particles only in combination with 
the normalization constant C. Thus for !-' decay 
it is only possible to determine the quantity 
G[1-(£ll/27r)C] = G(1-0.001162C). No con­
vincing arguments whatever are known at this 
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FIG. 4 

time in favor of one or another choice of the nor­
malization point. 

In references 1, 3, and 4 a certain normaliza­
tion for Jl decay results essentially from the fact 
that the sum of the three divergent expressions, 
corresponding to the diagrams of Fig. 4, are as­
sumed to be a definite number, in view of the gen­
erally accidental fact that the divergences cancel 
out. The authors of these papers forget, however, 
the arbitrariness that arises when divergent ex­
pressions are summed, and tacitly assume that 
the normalization constants (or, which is the 
same, the cut-off momenta) for the G-vertex 
and for the self energies of the electron and Jl 
meson should necessarily coincide. The falsity 
of this point of view was discussed in Sees. 1 and 
2. We can also note that the procedure used by 
these authors in substance prevents them from 
calculating corrections to the {3 decay even with 
a very rough account of the role of the strong in­
teractions8 through the constant form factor A. 

= I GA/G vi = 1.2. 
With the help of dispersion-relations techniques 

Durand et al. 2 deduce unique expressions for the 
probabilities of Jl and {3 decay, apparently from 
the condition that in the final expression the non­
physical photon mass A.0 must vanish (i.e., in 
essence from the gauge in variance condition). It 
should, however, be noted that in applying the dis­
persion techniques to electromagnetic processes 
they automatically introduce into this field the de­
termination of the renormalized coupling constant 
taken from the strong interactions. In reality the 
renormalized coupling constant can be determined 
in electrodynamics only when the emission of soft 
photons is taken into account. Therefore only the 
coupling constant determined in this way should 
be finite and independent of A.0• * When this cir­
cumstance is taken into account the choice of a 
definite normalization point in the work of Durand 
et al. 2 is no longer unique. 

In this way we are faced with a general situation 
in field theory of deducing experimental results 
from a theory in which the Lagrangians (0.1)- (0.4) 
are not fully known, and in which the constants 
( G, e, g, M, m, JJ.) entering these Lagrangians are 

*In the language of Durand et al.' the finite quantity should 
be the sum G2 + G2C ln(~/m2), and not G2 itself. 

not fully known. It is necessary, in addition, to 
specify a certain number C- the normalization 
constant. Only afterwards will the results be fully 
determined. 

An analogous situation also arises in other ver­
sions of renormalizable theories. In electrody­
namics, however, one usually introduces the addi­
tional boundary condition, which requires that the 
Coulomb law be satisfied at large distances. This 
means that the vertex operator is normalized at 
the point k = 0. In mesodynamics the determina­
tion of the g-charge as a subtraction at the point 
M corresponds to the normalization of the vertex 
operator as A ( M2, M2; m~) = 1. In the theory of 
Jl and {3 decay there are no conditions of this type. 
For this reason we cannot have in this case a 
unique determination of the coupling constants G, 
GA and Gy, related to each other. These con­
stants can be determined only simultaneously with 
the normalization constant C, as discussed above.* 
Therefore, from our point of view, one should not 
talk about the existence of a discrepancy between 
theory and experiment, as is done by Feynman. 5 

If an intermediate boson, responsible for weak 
interactions, exists, one might expect that in that 
case it would be possible to relate the normaliza­
tion constants for various weak interaction proc­
esses. However, until convincing arguments for 
the existence of such a boson are produced, the 
normalization constants of various processes 
( and, consequently, coupling constants ) will re­
main unrelated to each other. It makes no sense 
therefore (even under the conserved vector cur­
rent hypothesis) to talk at this time of the equal­
ity of coupling constants for various weak inter­
action processes to an accuracy better than the 
electromagnetic corrections. 

In conclusion the authors express their gratitude 
to D. V. Shirkov and Ya. A. Smorodinskii for fruitful 
discussions, and also to A. I. Larkin, V. G. Yaks, 
and B. N. Valuev for valuable remarks. 
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