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It is shown that for collective models with quadrupole excitations the branching ratio and 
interference phase shift of M1 and E2 radiation in a mixed M1 + E2 nuclear transition do 
not depend on the specific structure of the collective nuclear models. The ratio of the quan­
tities o 2 (M1/E2) = W(M1; It -I2 )/W(E2; It-I2 ) for two different M1 + E2 transitions of 
a given nucleus is a function only of the transition energies and nuclear spin states involved 
in the radiation process. By comparing this quantity with the experimental data one can esti­
mate to what extent the collective degrees of freedom are smeared out with increasing excita­
tion energy of the nucleus. 

l. It has been variously proposed to describe the 
spectra of even-even nuclei in the intervals 60 
:::sA :::s 196 and A > 210 by means of the vibration 
model, t •2 the axial-rotator model, t •2 and the non­
axial rotator model, 5 in which quadrupole collective 
excitations of the nucleus are considered. Common 
to all these models is the assumption that the exci­
tation spectrum and the radiation properties of the 
nucleus can be described in terms of the param­
eters a 2/J. of the deformation of the nuclear surface, 
and their derivatives a2W regarded as dynamic 
variables ( a21J. and a21J. are defined in the labora­
tory system throughout). It is assumed here that 
the coordinates a 2/J. and the generalized momenta 
1r 2/J. = B2 /J.a~/J.' where B2 is the inertia parameter 
of the collective motion of the nucleus, obey the 
commutation rule 

and the corresponding excitations of the nucleus 
are of the boson type. 

This naturally raises the question of how accu­
rately a boson-type collective excitation can be 
built up from the nucleons of the nucleus. It is of 
interest to estimate experimentally the accuracy of 
separation of such excitations. As will be shown 
below, a study of the angular correlations in a 
cascade of gamma quanta, one of which is a mixed 
M1 + E2 radiation of the nucleus, enables us to 
make this estimate. 

2. The angular correlation functions (with and 
without detection of the quantum polarization) in a 
cascade that includes the nuclear transition It 

- I2 with mixed M1 + E2 radiation depend ess.en-

tially on the branching ratios of the M1 and E2 
transitions 

62 (Ml/£2, !1 - !2) = W (Ml; !1 _, !2)/W (£2; 11 _, 12) 

(1) 
and the relative phase ~ of the reduced matrix 
elements of the E2 and M1 transitions, which we 
define through 

0 ;~_ ·1/~__!_ <I2IIM1{{!1) 
e - 1 Jl 3 w <h[IE2/{II) ' 

it being assumed here that o is always positive; 

(2) 

w is the energy of the nuclear radiation transition 
It - I2, expressed in mec2 units (multiples of 
0.511 Mev). 

The reduced matrix elements of the M1 and E2 
transitions are defined by the equations 

(l2'[Ml\\ l1)C~;~:1M =<!2M2~~ r; Y~~ j; 1/1 M1), (3) 
£=1 I 

All the quantities are best defined in units for 
which ti = me = c = 1 and e 2 = %37 ; the nuclear 
radius is R0 = 0.43A1/3e 2, corresponding to R0 

= 1.2 X 1o-t3AV3 em. ctgc is the Clebsch-Gordan 
coefficient and YLM are s~herical vector har­
monics (see reference 4). 

In order to define o and ; uniquely, we give 
the angular correlation function for two gamma­
quanta in the cascade I1 ( M1 + E2) I 2 ( L) I3, where 
L is the multipolarity of the second quantum 

W (612) = ~ CxPx(cos 612); (5) 
x=0,2,4 
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Cx = Ctlxo(2x+ 1) u(xL/2 fa; L/2) 

X {C~~xou (2ftx/2;/22) + b2Cnxou (111 x/2; / 21) 

+2b cos ~c~gx0 u(21xl; II) u (ll1 x/2 ; 122)}. (6) 

Here u (abed, ef) is the normalized Racah function, 
tables for which are found in the paper by Yang. 5 

For the inverse cascade I3 ( L) I 2 ( M1 + E2) It, 
the gamma-quantum correlation function is also 
given by (5) and (6), but it is necessary to reverse 
in (6) the sign of the interference term propor­
tional to o cos ~. The angular correlation func­
tions with and without detection of quantum polari­
zations are described in greater detail in the re­
view of Biederharn and Rose. 6 

3. A sufficiently accurate correlation experiment 
will thus enable us to find two physical parameters 
of the rad;ative transition of the nucleus It ___. I2, 

namely o ( M1/E2, It ___. I 2 ) and cos ~. Let us 
consider these quantities in the collective models 
of the nucleus. 

In all the previously mentioned collective mod­
els of the nucleust-3 the operators of the E2 and 
M1 transitions in terms of the variables a 2J.t and 
a2J.t have the following form: 

the E2 transition operator 
z 

e ~ r~ Y;M-+ ~ Pp (r) r2 Y;M (r) dv = 43n ZR~ea2M + ... , (7) 
p~l 

the M1 transition operator 
A 

~ r, Y~:W j, - ~ jN rY~:W dv = J~l +J~~i +. . . (8) 
i=l 

Here 

(9) 
mv 

M is the mass of the nucleon in me units ( M 
= 1840) and ~ is the gyro magnetic ratio for the 
collective motion of the nucleus in the hydrody­
namic model, gR = Z/ A. 

In the derivation of (7)- (9) it is usually as­
sumed that the charge density of the nuclear 
transition, pp ( r), is uniformly spread over the 
volume of the nucleus, and the collective current 
of the nuclear transition, jN is determined in 
terms of the rate of flow of the nuclear liquid 

(11) 
m 

We note, however, that these model assumptions 
are essential only for the values of the coefficients 
of the operators of the E2 and M1 transitions of 

the nucleus, whereas the functional dependence of 
E2 and M1 operators on the variables a 2m and 
1r!m = B 2a2m does not involve the models. In 
order for relations (7) and (8) to hold, it is suffi­
cient to assume that the expansion terms contain­
ing the higher powers of a 2m and 7T 2m are small 
and can be neglected. We note also that the opera­
tors B 2a 2m and a 2J.t freely commute in (10). 

The specific forms of the operators a 2J.t and 
1r 2J.t may differ in the vibration and rotation mod­
els; for the vibrator, a 2J.t and 1r2J.t can be repre­
sented in terms of operators of creation and anni­
hilation of quadrupole phonons c'jj, and eM, while in 
the rotation models a 2J.t and 1r2J.t act on the angles 
of orientation of the deformed nucleus. In both 
models, however, the operator JfSJ. (see reference 
1) is proportional to the angular momentum oper­
ator of the nucleus I, for which we have according 
to Bohrt 

(12) 
mq 

and in the particular case of the vibration model 

( 1)V [A i "Jf10 "' lV rnA+ A A+ A 
- _v=--2 -.LJC2m2q[{-1) C-mCq-(-1)qc-qCml. 

mq (13) 

Formula (13) for the operator Lv holds also 
for the anharmonic vibrator, inasmuch as the 
state function WIM·i of the vibrator can be ex-. , n 
panded m terms of the states XIM of the harmonic 
vibrator ( n is the number of phonons ): 

'¥1M; i = ~a;nX7M· (14) 
n 

Applying the operator (- 1 ) 11 f_v (13) to WIM;i> 
we get 

(-1)v Lv'¥IM; i =~Gin (-1):1 -v x7M 
n 

= (-1) v 'VI (I+ I) c~~~v WIM-v; i• (15) 

Thus, regardless of the specific structure, the 
operator Jt$.l makes no contribution to the radia­
tive M1 transition of the nucleus, and the proba­
bility of the M1 transition is determined by the 
operator J!U_. 

The operator J~ can be expressed in terms of 
the operator of the E2 transition, proportional to 
a 2J.t, and the operator of angular momentum of the 
nucleus f_ 11: 

(16) 

Relation (16) for J~ is not self-evident. It was 
obtained by Davydov and Filippov and given without 
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proof in reference 7, where relation (16) was used 
to calculate the probability of the M1 transition 
between the states 2'-- 2 of a non-axial nucleus. 

Relation (16) can be obtained from (10) by using 
the following equation for the Clebsch-Gordan 
coefficients 

L; c~~2v c;~,2", ~~'-·~'-· = - 2 VT L; c~~p., c~;;..p., £~'-·~'-·' (1 7) 
P.tP.2 lltP.2 

where ~J.Lt/-l 2 =~JJ. 2 JJ. 1 is an arbitrary symmetrical 
function of JJ.t/-l 2 [a derivation of (17) is given in the 
Appendix]. It is not necessary to consider here the 
specific action of the operators a 2JJ. and rr 2JJ. on 
the wave function of the nucleus. Relation (16) 
holds for any model with collective quadrupole ex­
citations of the nucleus. 

4. Using (16) and taking into account the result 
of the action of the operator ( -1 )vLv on the wave 
function of the nucleus i'IM [see (15)], we obtain 
after summation over the magnetic quantum num­
bers the following expression for the matrix ele­
ment of the M1 transition of the nucleus 

('I";,M,\JW ["II"I,M) = (I.JJM11\f1) C};~;1M 

=- igR~ 3 ~5 YI1 (/1+ 1)u(l.I1 11; 2I1) 

X (12[Ja2[II1) C};~:1M, (18) 

and for the operator of the E2 transition we get 

('I";,M, 14! ZeRg a2M \ "II"I,M) = <I.II £21111> c§:~:2M (19) 

= ;_ZeRg (I2IIa•III1) C};~;2M• 
'1n 

where we have from the definition of the reduced 
matrix element 

for certain transitions of the strictly harmonic vi­
brator, which proceed via annihilation of two 
phonons. 

In general, the quantities ( gR /Z )2 can not be 
considered known, since the coefficients in the 
operators of the M1 and E2 transitions depend on 
the models assumped. It is therefore more conve­
nient to compare the ratio of two values of 
o2 ( M1/E2') for different mixed M1 + E2 nuclear 
transitions It- I2, and I3 - I 4• In this case the un­
known factor (gR/Z) 2 drops out of the final result 

62 (M1/£2, I 1 -""I•) 
I\"(M1/E2, Is-"" h) 

= (Ws4)2 
W12 

(11 +I.+ 3)(lt- I2 + 2)(1.- I1 + 2)(ft + Io -1) 
Us+ I,+ 3)(ls- I.+ 2)(1•- I3 + 2)(13 + I.-1)' 

(23) 
5. The deviation of the experimental values 

from the quantities (22) and (23), predicted by the 
collective models of the nucleus, may be due to the 
inaccuracy in the separation of the collective de­
grees of freedom. In this case the contribution of 
the single-particle admixture can change the result 
appreciably. Actually, the estimated probability of 
the most intense single-particle M1 transition be­
tween the levels of one spin-orbit doublet is 

(24) 

where JJ.n is the magnetic moment of the nucleon 
in magnetons, whereas the collective M1 transi­
tions have a probability 

... m c<J. 
e2 w3 gR. e 

W cot (M 1) ;:::::; M2 n ~2 -,- , 
(25) 

where {3 2 = < L:; I a 2JJ. 12 > is the nuclear de forma­
JJ. 

(20) tion. Thus 

The quantity <I 2 11 a 2 II It> depends essentially on 
the structure of the model, but the branching ratio 
of the M1 and E2 transitions does not contain this 
matrix element. 

Using (18) and (19) for the experimentally 
measured quantities o2 ( M1/E2, I1 -I2) and cos~. 
we obtain, according to (1) and (2) 

cos£=1, 

6~ (Ml/£2, 11 - I 2) 

500 
= 441 U1 + I•+ 3) (11 - I•+ 2) (12 - I1 + 2) 

X(l1 +I.-1) (gR/ZroMR~) 2 ; 

here w is the transition energy in units of 

(21) 

(22) 

mec 2 ( 0.511 Mev). Formulas (21) and (22) are 
valid for all the collective models with quadrupole 
excitations, independently of the specific structure 
of the model; only these formulas are inapplicable 

Ws.p.(M1)/WcodM1);:::::; (f.tnlgR~) 2 • (26) 

Neglecting the contribution of the single-particle 
transitions to the probability of the nuclear E2 
transition, and taking them into account only in the 
M1 transition, we obtain a rough estimate for 
o2 (M1/E2, It-I2): 

o• (M1/E2, II___, I.) 

;:::::; [1 +a2 (f.tn/~gR) 2 l O~ol (Ml/£2, ft ___, I.), (27) 

where o~ol is given by (22). 
The parameter a 2 is a measure of the admix­

ture of the single-particle states. Its structure 
can be made more precise only with a specific 
microscopic model of the excitations of the nucleus. 
Since (J,J.n/f3gR )2 R:l 102 - 103, even a small admix­
ture of single-particle transitions changes the 
value of o 2 ( M1/E2) appreciably. The sign of 
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cos ~ can also change when the admixture of single­
particle transitions becomes considerable. 

We are thus able to estimate experimentally the 
purity of separation of the collective degrees of 
freedom for even-even nuclei, where the reduced 
probability of the E2 transitions is appreciably 
greater than the single-particle estimate. Unfor­
tunately, there are not enough exact and complete 
data at present to make this analysis possible. The 
available experimental values of o 2 ( M1/E2) appa­
rently do not contradict the estimates of the collec­
tive models, 8 but the accuracy of these data is low. 
It is of exceeding interest to measure the values of 
62 ( M1/E2) for several transitions of one and the 
same nucleus, so as to be able to trace the "smear­
ing" of the collective degrees of freedom of the nu­
cleus with increasing nuclear excitation energy. 

APPENDIX 

Relation (17) can be obtained by successive ap­
plication of the expansion formula 

We have 

+ ~ £11,p., {u (2221; 22) c~~~'• c~;:, 2p., 
1-lt J.12 

+ u (2221; 32) c~~p.. c;;:,2p..}. (A.2) 

U.sing the sy~metry ~11-1JL 2 = ~11- 2 11- 1 ( ~ll-1JL 2 is an ar­
bitrary functwn symmetrical in MtJL 2 ) and trans­
forming, in accordance with (A.1), the terms in the 
curly brackets, we obtain with allowance for the 
numerical values of the u-functions 

Applying formula (A.1) successively at each 
stage to the terms with N ¢ 1 in the curly brackets, 
and separating each time the new terms with N = 1, 
we obtain a geometric progression 

x ~ £1',f.l•c~~~'· c~;:,2p.,. 
tlt!J.2 

and after summing this series we arrive at 
formula (17). 
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