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The branchings of the electron Green’s function G (p) and the photon Green’s function D (k)
at the respective points p? = m? and k% = 0 are discussed. In electrodynamics the branching
of G(p) indicates a nonstationary behavior of the amplitude of the one-electron state, and
with the usual gauge for the potentials this amplitude increases with the time; this is con-
nected with the indefinite metric. A branching of D (k) at k* = 0 arises as a consequence
of the weak three-photon and photon-neutrino interactions, but the singularity of the function
at this point is a weak one, so that the one-photon state remains stationary.

IN the nonrelativistic case the Fourier component
of the Green’s function

1 .
G (P, V) = 5\ G (p) e dpy

is equal to the probability amplitude for finding
the initial state &gp =ap|vac) in the state

D, (1) = exp (—iHT) Py,

obtained from &g, after the time 7.! We shall de-
rive analogous relations in the relativistic case.

If the Schrodinger operator ¥ of the spinor field
has the form

¥ (x)

N . .
%l (upre™ apy+v*_pre=®xb),
P

then
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Gl (p’ 1'-) = <ap7\e_tH"a;)\> = E Sp G (— P, T) (p+m)y

Ge (p, ) = Gppeebp) =g~ Sp G (b 9 (p — m). (1)

Here 7 > 0, the averaging is over the physical vac-
uum, and p = €p = (p? + m?)¥2; the notations are
those of Feynman. In electrodynamics the function

G (p) has a well known branching at the point p?
22,3
=m*,%

ptm 8
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G(p)=i

pr>m?

For djy; < 3 (for example, for the commonly used
djp =1 or djy=0) we have 8> 0, and according
to Egs. (1) and (2) this means an increase of the
amplitude of the one-electron state with time:

@)

G, (p, ©) = const -exp (—ie, T -+ In &, 7).

The increase of the amplitude, Eq. (3), is connected
with the indefinite metric in electrodynamics. In
addition to the ‘‘no-quantum’ state &gy = apy | vac)
the state vector contains states of negative norm

with longitudinal and scalar quanta, which are phys-
ically indistinguishable from &gp) by gauge invari-
ance. The complete norm of the state exp (—iHT)x
Pgpy is conserved, according to general theorems.*

In the usual case of states with positive norms
the replacement of the pole of the Green’s function
by a branch point describes a damping of the one-
particle state. Such a branching is due to the pres-
ence of a spectrum of two-particle excitations join-
ing on continuously to the one-particle ones. Since
through the weak interaction a photon can go over
into two photons and two neutrinos, a replacement
of the pole by a branch point must occur in its
Green’s function Dpp(k). If the quantity k®Dpp(k)
went to zero for k? — 0, the photon would be in
principle unstable, dissociating in time into a pair
of massless particles with the same direction of
motion. Let us find the form of the branching of
D (k).

In lowest order in k, when we take into account
CP invariance and symmetry in the particles, the
three-photon vertex part must have the form

ey an €3 Line = Qeinim [ey; €an st (Rym (R2— R2) 4 kom (k2 — k2)
+ Ram (k§ - kf)) — 2 (ex: e Ryt kam (e3 ks)

e €3t Rar Ram (€1 Ry) -1 €32 €10 Ras Rim (3 k2)) 1. 4)

Here €jkjm is the unit antisymmetric tensor, ej,
ki are the polarization and momentum vectors of
the quanta, and k; + ky + k3 = 0. The expression
(4) is gauge invariant: in a longitudinal external
field, for example, ez = ksf (kg), the scattering
amplitude of a real photon with k3 = k¥ = 0 is zero;
the general case can be reduced to this by means
of dispersion relations. If we derive the interac-
tion (4) from the known weak and electromagnetic
interactions, we get for the constant a the esti-
mate a ~ e3G*A%u™4, where G? ~ 1071, 4 is the
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mass of the ™ meson, and A is the momentum at
which the four-fermion interaction is effectively
cut off.®

Similarly, the amplitude for transition of a
quantum into two neutrinos must have the form®

e, T, =bie,0,+by0,¢en (8rn k* — kr k). (5)

Here oy = (0,1) is the two-rowed matrix spin vec-

tor; we are using the two-component representation.

The case by # 0 corresponds to a charged mass-
less particle, and we have treated it earlier;’ we
here take b; = 0. On the assumption of a direct
(ev, ev) interaction the quantity b, has the order
of magnitude by ~ Gep™2 In (A/m).
Setting, as usual,
Dm (k) = k™ [dt (6,,1 k2 — k, kn) + dl ke kn]y
di = [1 — 4all (&)1,

we find that the contribution of the processes in
which we are interested to the imaginary part of
II is

2>0,

2 ImIT (#%) = {[[‘”2“30/, 12l Ay

From this we have

di' (k) = 1 — k* (8a? + b3/6m) (In (— k?) 4 const).  (6)
Because transitions to two-particle states are
strongly forbidden, the singularity in d¢ is rather
weak, and there is no ‘‘infrared’’ damping. Thus
the hypothetical case by = 0," for which df!=
- (b}/67) In(—k?), is the only one in which the
photon is not rigorously stable.
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We note, finally, that the expression (4) can be
interesting in itself as the phenomenological am-
plitude of a ‘‘purely electromagnetic’’ process
that does not conserve parity.s’6 For example, it
describes a rotation of the plane of polarization
of a photon in scattering by a Coulomb field. These
effects are small, however, if we use the estimate
for a given here.
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