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The effect is determined of a strong electric field on the optical absorption coefficient due to 
the conduction electrons of a nonmetallic crystal (semiconductor, insulator). 

THERE are several mechanisms for the absorption 
of infrared radiation in semiconductors: 1) intrin­
sic absorption; 2) absorption due to local states; 
3) lattice absorption; 4) free-carrier absorption.1 

Recently attention has been given to the effect of 
external fields on these mechanisms, e.g., on the 
intrinsic absorption. 2 •3 This interest is due in 
particular to the fact that semiconductor devices 
(p-n junctions, transistors) operate under condi­
tions which create strong electric fields in them. 
However, no theory has yet been given which takes 
into account the effect of a field on the remaining 
three mechanisms. In connection with the prospec­
tive use of semiconductors to amplify and generate 
infrared radiation, 4 the carrier absorption mecha­
nism merits particular study, since it can be a 
competing process. 

In the absence of a field, the mechanism under 
consideration consists of the absorption of a photon 
and the transition of an electron between levels of 
a single conduction band (in an n-type semicon­
ductor). However, by virtue of the selection rules, 1 

a direct transition in a single band is forbidden, so 
that it only occurs through intermediate states, 
with the participation of lattice vibrations or im­
purity centers. From the viewpoint of perturbation 
theory this process is of the second order. How­
ever, because the selection rules mentioned are 
determined by the wave functions of the electrons 
in the perfect lattice, it can be anticipated that they 
cease to apply when the wave functions are signifi­
cantly changed owing to the strict periodicity of 
the lattice field being destroyed. The character of 
the optical absorption by the electron should also 
change. We shall consider changes of this type, 
assuming that the periodicity is destroyed by an 
external homogeneous electric field. As a result, 
we will show that under defined conditions a suffi­
ciently strong field can so change the electron 

states that direct transitions (in the first order of 
perturbation theory), with simultaneous absorption 
(emission) of a photon, become possible between 
levels of the conduction band as altered by the 
field. 

It is convenient to expand the wave functions in 
terms of Wannier functions: 5 

(1) 
n,m 

where wn ( r- rm) is the Wannier function of the 
n-th band localized at the lattice site m Ox, ly, lz). 
The coefficients .Pn are determined from the sys­
tem of equations 5 

(E~ (p) + rF -E) <I>n =- ~ Frnn•<l>n·· (2) 
n'+n 

Here F / e is the electric field strength, rnn' are 
the coordinate matrix elements, and E~ ( p) is the 
operator obtained from the expression for the 
energy in the n-th band as a function of the quasi­
momentum in the absence of the field, by replacing 
tik by the momentum operator p. 

In the zero-order approximation, we neglect the 
effect of the energy bands on one another by dis­
carding the right-hand side of (2). This means 
that we ignore the Zener effect, 6 which occurs in 
very large fields of the order of 106 v/cm. Of the 
equations obtained for the separate bands, we will 
consider below only the equation for the conduction 
band. 

In order to determine 4>n and E, an sxplicit 
form of E~ ( tik) is needed, which forces us to use 
an approximate model. With a view to revealing 
the conditions under which the effect of the field 
on the states will be significant, we will use the 
"strong coupling'' approximation, 7 which, for a 
simple cubic lattice, gives: 

o 3 a.k.' 
En= En- 2an ~ sin2 ( T), (3) 

l=l 
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where ai are the primitive translations, 2an is 
the width of the band. Limiting the summation in 
(3) to nearest neighbors only corresponds to as­
suming that the band is narrow. 7 If we put 

<I>n (r) = ~ cp (p) exp (- i rp/1i) d-r:p, 

then we obtain from (2) 

[ i ~ (CsPs sin aks)l cp (p) = A exp n L.J p-- r:tn ~ • 
So-=1 S S . 

Using the series expansion of exp (- iz sincp) 
in terms of Bessel functions, 8 we reduce <I>n to 
the form 

<I>n (r) = Al,_• (- CJ,n/aFx) Jk" (-anlaFy) Jk"' (-an/aFz), 

k' = C1/aF x + xla, k" = C2/aF y + y!a, 

k"' = CalaF z + zla. 

(4) 

(5) 

The requirement that the wave function be Unite 
can only be satisfied when Jk is a Bessel function 
of the first kind, and k', k'', k"' are whole numbers. 
The energy spectrum of the electrons in the band 
then becomes 

where St. s 2, s 3 are whole numbers replacing 
Ci/aFi, and the normalized wave function is 

(6) 

Xwn(T- Tm). (7) 

Since the external field does not change the 
number of states in the band, the limits of the var­
iables Si are given by the relationships 

- N;/2 < S; < N;/2, ( 8) 

where Ni is the number of elementary cells in the 
crystal in the i axis direction. 

The wave function (7) and the discrete spectrum 
(6) which have been obtained correspond to finite 
motion of the electron. We emphasize that this 
result is essentially related to the assumption that 
transitions of electrons from one band to another 
can be neglected. The possibility that the energy 
of an electron in the crystal in a homogeneous 
field can be quantized has been discussed under 
similar assumptions by I. Lifshitz and Kaganov, 
using a different method, 9 for an arbitrary disper­
sion law En (tik) as applied to metals. This quan­
tization cannot, however, give observable effects 
in metals. In fact, for the quantum character of 
the states to be displayed, it is necessary that the 
amplitude of the periodic (in the quasi-classical 

sense) motion, which is of the order 2an/F, 
shall be smaller than the mean free path. Even 
for large current densities j = 102 amp/cm 2, the 
attainable fields F /e in metals amount to 10-8 

- 10-6 cgs esu, so that 2an/F ~ 104 em, which 
greatly exceeds the mean free path. 9 In semicon­
ductors and insulators fields of F / e ~ 104 cgs esu 
can be realized when the energy gap separating off 
the conduction band is sufficiently large. If, more­
over, the width of the band is small, so that, for 
example, 2an ~ 0.1 ev, then 2an/F is 10-6 em. 
The mean free path in a number of semiconductors 
( Ge, Si) attains 10-5 -10-4 em, which greatly ex­
ceeds the amplitude of the periodic motion.10 

Assuming that all the required conditions are 
satisfied in our model, we will calculate the optical 
absorption coefficient due to electrons of the band. 
The interaction of an electron with light is given in 
the coordinate representation (1) by the operator 

W = eAp!mc, 

where p is the momentum operator, A is the 
vector potential: 

A= (Qe)-'f, ~ qa~at exp (i ar), 
a, I 

(9) 

(10) 

where a is the photon wave vector, ;at are the 
unit polarization vectors, and Q is the volume of 
the crystal. The matrix element of the transition 
from the state sx, sy, Sz to the state sX:, sy. Sz is 

<'lls· I WI 'lls> = V n :S q" TI Js;-t; c-::~) J/-t' c~;n) 
me e a,l,l' i=l l z t t , 

X ~ Wn (r- Tt) (~aP) eiarwn (r- rl') d-r:. (11) 

The integral in (11) admits the f<!llowing trans­
formation: 

~ Wn (r- Tt) (~a p) eiarw~ (r- rl') d-r: 

= eiarz ~ Wn (p) (~aP) ei"Pwn (p- (ri'-Tt))dT. 

Since the region in which the function wn ( p ) is 
localized has linear dimensions of the order of the 
lattice constant, a, but the wavelength of light ;\ 
»a, then we put eia·p = 1 in the integral. The 
matrix element (11) can only be non-zero if ac­
count is taken of the overlapping of the Wannier 
functions for neighboring cells. 

Taking the cubic symmetry into account, we ob­
tain the relations 

Ao = ~ Wn (p) PxWn (p ± al) d-r: = ~ Wn (p) pyWn (p ± a2) d-e 

= ~ Wn (p) PzWn (p ± aa) d-e; 

At=~ Wn (p) Px'.Vn (p ± a2) d-r: = ~ Wn (p) PxWn (p ±aa) d-e. (12) 
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The fundamental formula determining the ab­
sorption coefficient JJ. is 

fl = J5Ve ;c, (13) 
- 2n 
P = T ~ I <1Jls' I W I1JJs> 12 p (Es') f (Es) (14) 

!:, s' 

where P is the total absorption probability, calcu­
lated for 1 sec, f ( Es) is the electron distribution 
function (Maxwell-Boltzmann) normalized to the 
number of electrons N, E is the optical dielectric 
constant, and p (E) is the density of electronic 
states on an energy scale. 

Because of the complexity of (11), calculation 
using formula (14) presents great difficulty for an 
arbitrary flux direction. We therefore evaluate J.L 

for the particular case when the light flux is di­
rected along the x axis of the crystal. We will 
also assume that the radiation is unpolarized, so 
that 

tz = ~oy = 0, 

In the optical frequency region considered, w 
~ 1014 and for all attainable fields liw 
» I an sin ( aa/2) I. With these assumptions we 
obtain 

2nne2 (A 0 + 2A1 ) 2 J 2 ( rxn , :;a ') 
fl = /jo>/1XF -aF- Sin --.-, ,' 

m2cw Ve aF "" 
(15) 

( n = N/~ ). Because also era « 1, then when an 
~ 0.1 - 1 ev we have, for all frequency ranges, 
nw » aF. This inequality permits us to use an 
asymptotic form of the function J p ( x), 8 and to 
bring (15) to the final form 

F (w) = liw ln ( liw \ (16) 
o 2a rxn sin (ca) )' 

The multiplier ( 1 - e-liw/kT) takes the induced 
radiation into account. For small fields ( F < F 0 ), 

the absorption J.L is small, and disappears as F 
- 0. For fields F > F 0, the quantity J.L tends to 

saturation. It is of interest to note that the fre­
quency dependence of the absorption J.L is the in­
verse of that which was observed under the exper­
imental conditions used by V. Vavilov and Britsyn3 

where the intrinsic absorption mechanism appa­
rently dominated: with increasing frequency the 
absorption gets smaller. This fact can serve to 
separate the contribution of free carriers to the 
absorption in a field from other contributions in 
the total absorption coefficient. 

We remark finally that the effect discussed 
should be expected in semiconductors with im­
purity bands the width of which is small, and that 
at sufficiently low temperatures the applicability 
conditions of the calculations given improve. 
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