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The energy dependence of the cross sections for elastic scattering, X (aa)X, and for the 
reaction X ( ab) Y are determined near the "threshold" for production of an unstable par
ticle Y, which decays immediately after it is produced ( Y- c +d). The results obtained 
may be useful in nuclear physics. 

1. INTRODUCTION 

THE form of the energy dependence of an arbi
trary two-particle reaction X ( ab) Y near its 
threshold is well known. 1 It is also known that 
the cross section for elastic scattering X ( aa) X 
exhibits an anomaly (a peak or cusp) at the 
threshold point. 2•3 In all the papers cited, how
ever, it is assumed that the particles b and Y 
are stable, so that both at the beginning and the 
end of the reaction only two particles are present, 
namely a + X and b + Y respectively. 

If one of the final particles, say Y, is actually 
unstable (width r ) and decays after some time 

Y -+c+ d, (1) 

then formally one is dealing with a three-particle 
reaction 

(2) 

As a consequence of the existence of a finite width 
r the threshold will not be sharp in this case, but 
will be "smeared" out in an energy region .6.E "' r 
near the energy Er of the particle Y. 

Such a situation arises very often in nuclear re
actions, in.which one of the reaction products is an 
excited nucleus, in high energy physics in strange 
particle production, etc. In this connection it be
comes of interest to study the energy dependence 
of cross sectio~ near the "threshold" for produc
tion of an unstable particle Y. This turns out to be 
possible in a quite general manner. In Sec. 2 we 
obtain an expression for the cross section for re
action (1), and in Sec. 3 for the elastic scattering 
process X ( aa) X. For simplicity we consider 
throughout the case of spinless neutral particles. 

2. REACTION CROSS SECTION NEAR THRESHOLD 

Let us consider reaction (2) in more detail. For 
energies E of the colliding particles X + a near 
E1 (see Fig. 1), the cross section for the reaction 
X + a - b + c + d, just like the total cross section 
for any three-particle reaction, is proportional to 
a "' ( E- E1 ) 2 and is consequently very small if E 
is sufficiently close to E1. 
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FIG. 1 

The distribution of the final particles ( b + c + d) 
in energy ( spectrum ) near threshold should be 
statistical (provided there is no zero energy reso
nance among the particles b, c, and d) as is illus
trated by the curve labeled 1 in Fig. 2; the figure 
shows schematically the differential cross section 
a ( Ecd• E) as a function of the energy of relative 
motion of particles c + d; Ecd = E- E1 - Eb, where 
Eb is the energy carried off by particle b. 

The statistical form of the spectrum corre
sponds to 

a (ecd, E) =const · V Bed (E -£1- BcJ). (3) 

FIG. 2 
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Let us now increase the energy E, gradually ap
proaching Er. Simultaneously the form of the spec
trum will change in some manner (curve 2 in Fig. 2): 
the nearer we approach Er the more pronounced 
becomes the maximum at the upper end of the spec
trum (curve 3). When E exceeds Er the maximum 
stabilizes at Ecd = Er- E1 = Eo (curve 4) and as E 
is increased further remains at the same place 
(curve 5). 

The appearance of the maximum is due to a 
resonant interaction between particles c and d 
( c + d ~ Y) and is simplest understood in the fol
lowing manner. If the interaction of particle b 
with c and d is neglected then the differential 
cross section for the reaction should be of the fol
lowing form4 (by analogy with the well known ex
pression for two-particle reactions): 

(4) 

where 1/JE is the value of the wave function describ
ing the relative motion of the pair c + d (with the 
energy E) at the surface of the region within which 
the reaction takes place, cp E is the corresponding 
value of the wave function describing the motion of 
particle b relative to the pair c + d, and t is 
some function determined by the details of the nu
clear interaction. 

It follows from the assumption of the existence 
of the quasistable particle Y that a resonance ap
pears in the elastic scattering c + d - c + d at 
the energy Ecd = Eo i.e., that 1/JE has as a function 
of the energy a pole at E = Eo- ir. 5 This means 
that near Ecd- Eo 

(5) 

and, correspondingly, the spectrum (4) has a maxi
mum near Ecd i::; Eo 

(6) 

with the form of the spectrum in this region given 
by the Breit-Wigner curve. 

We are now in a position to find the energy de
pendence of the total cross section near the thresh
old for production of Y 

E-E, 

o(£) =' ~ o(e, E)de. (7) 

To this end we note that the main contribution to 
(7) in this energy region comes from the reso
nance maximum (6) at E i::; E0, and the lower part 
of the spectrum ( E < Eo) leads to the appearance 
in a (E) of a small term, whose energy depend
ence is weak. We may therefore replace in Eq. 

(7) the lower limit by E0 -.6. (.6. is some quantity 
» r) and obtain, after discarding all factors that 
vary slowly with the energy near E = E0, (it is 
assumed that Y + b are produced in an S state, 
so that I CfJEb 12 - Eb = E- E1- E, and that r « Eo) 

D./Eo 11 I Y , 
'~ .) dy (y- cr)2 -f --;yz , 

0 

where a= (E- Er)/E0, y = r/E0• 

In the case of interest to us, when I a I « 1 and 
y « 1, the main contribution to the last integral 
comes from the region of small values of y so 
that we may let the upper limit go to infinity; we 
then obtain immediately 

(8) 

+ iy)'1• = ~ e;(• R.e [£- (Er -if)]'i•. 

Consequently the cross section for reaction (2) 
equals near the "threshold" 

a(E)=aR.e[E-(Er-if)]'!,, (9) 

where a is some constant. The physical meaning 
of this result is perfectly obvious. 

Were Y a stable particle (with r = 0) then 
a (E) would be proportional to ( E- Er )112 above 
threshold and would be equal to zero for E < Er. 
Because in our case the threshold is not sharp 
this picture is smeared out. 

The function Re [ E - ( Er - ir )] 112 is plotted in 
Fig. 3. This function is equal to 

= {(E- Er)';, [1 + + f2((E- Er)'], E- Er > ~ 
r12VEr-E, Er-E>I. (10) 

By precisely the same method as above one may 
calculate the cross section for reaction (2) in the 
case when Y + b are produced in a state with l ¢ 0. 
One then finds that, near the threshold, 

(11) 

where the constant term corresponds to that part 
of the total cross section that arises from the in
tegration over the lower part of the spectrum 
( Ecd < Eo). Strictly speaking such a term should 
also be included in Eq. (9), however for the case 
l = 0 it is, apparently, unimportant since the first 
term in Eq. (11) is then sufficiently large. 
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FIG. 3 

3. ELASTIC SCATTERING CROSS SECTION 

Let us consider now the cross section for elas
tic scattering X (a, a) X near the ''threshold'' for 
the production of Y. IT we limit ourselves to S
states, then we have for the elastic and inelastic 
cross sections the formulas 

0 reac = nk-2 ( 1 - I S [2), (12) 

where k is the wave vector of the colliding {>ar
ticles a + X, and S is usually written as e210 
[ o is the scattering phase shift for the reaction 
X (a, a) X]. From here we obtain right away 
[see Eq. (9)] 

IS 12 = 1-k2Ureac/:rt = 1- (k2a/:rt)Re [£- (Er- if)J'1'. 
(13) 

It follows from Eq. (10) that, if the width r of 
the paricle Y is small, the inelastic cross section 
a (E) is small in the region near threshold and, 
correspondingly, 

IS\= 1- (k2a/2:rt) Re [£- (£;.- if)J'1'. (14) 

Noting now the obvious equality 

I 1 +a I = 1 + Rea, 

valid for an arbitrary complex number a for I a I 
« 1, and remembering that S should be an ana
lytic function of the energy, we get 

S = e2 ii5, [1 - (k2a/2:rt) (£ - (Er- if)) '1•], (15) 

where o0 is a certain real quantity which may be 
considered to be constant in the vicinity of the 
"threshold." In the case of a stable Y ( r = 0) 
this formula reduces to the usual expression for 
S (see Baz'2). 

As was shown by the author,2 formula (15) when 
substituted into the expression for ael (12) leads, 

in the case r = 0, to the appearance of character
istic singularities in the elastic cross section at 
the threshold point (peaks or cusps). The insta
bility of Y ( r ¢ 0 ) leads to a smearing out of 
these singularities (for a more detailed statement 
see below). Consequently the singularities in the 
elastic scattering cross section are smoothed out 
for sufficiently large r. With the exception of 
this circumstance the case of an unstable Y does 
not differ in any way from the previously dis
cussed2 case r = 0. In particular, all conclusions 
about the possibility of deducing important infor
mation (scattering phase shifts, etc.) from the 
study of the singularities in the elastic scattering 
cross section near the threshold point remain 
valid (provided, of course, that r is not so large 
as to completely "smear out" these singularities). 

4. CONCLUDING REMARKS 

The above-obtained formulas (9), (11) and (15) 
may be summarized as follows: the cross section 
for the reaction X ( ab) Y has an energy depend
ence of the form ""' ( E- Er )l+1/2 in the case of a 
stable Y, andoftheform ,...,Re[E-(Er-ir)]l+l/2 
in the case of production of an unstable particle; 
otherwise there is no difference between the two 
cases. For E- Er > r these functional depend
ences are practically the same (see Fig. 3). They 
differ from each other only in the region near Er 
and below threshold. 

IT the production cross section of the unstable 
Y is known experimentally then it is easy to de
duce from the form of the energy dependence the 
width r of this particle. To this end one only 
needs to choose the parameters Er and r in Eq. 
(9) so as to best approximate the experimental 
curve. 

Equation (9) may turn out to be useful in one 
further respect: to estimate the magnitude of the 
cross section for the reaction X + a - b + c + d 
below ''threshold" when the production cross sec
tion above ''threshold" is known. Indeed, above 
"threshold" the cross section (9) becomes areac 
;::, a ( E - Er) 1/ 2 and the magnitude of the constant 
a may be easily determined since in this region, 
as a rule, the production cross section is suffi
ciently large. Knowing a, Er and r, we obtain 
directly from Eqs. (9) and (10) the magnitude of 
the three-particle production cross section below 
threshold 

oread ar I 2(Er- £)'1'· 

The ''width" of particle Y may also be deter
mined from the behavior of the elastic scattering 
cross section X ( aa ) X near threshold by studying 
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the degree to which the threshold singularity is 
"smeared out." As an illustration of this we cal
culate the cross section for s-wave scattering. 
By substituting Eq. (15) into Eq. (12) we get 

Oel = 4:n:k-2 sin2 00 - 2a {sin2 00 Re [£- (Er- if}]'/, 

+sin 00 cos 00 Im [£- (Er ~ if)]'1'}; 

and the energy dependence of the cross section 
near threshold, as determined by the second term 
in this formula, makes it possible to find r. As 
an example we show in Fig. 4 the form of the sin
gularity in Uel for various values of r. 
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FIG. 4 

We have assumed throughout that the unstable 
particle decays into two stable ones: Y - c + d. 
Using the same method as above it can be shown 
that Eqs. (9), {11) and (15) remain valid no matter 
what the mode of decay of Y (three-particle de
cay mode, as in the case of the neutron n- p 
+ e· + v, four-particle mode, etc.). 

We take this opportunity to express gratitude 
to Ya. A. Smorodinskii for interest in this work. 
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