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The Cooper effect in a low-density Fermi gas is studied. The magnitude of the transition 
temperature into the superfluid state is determined. 

IT is well known that the basis of superconductivity bound pairs begin to form and to "condense." The 
is the so-called Cooper effect1 which consists in normal ground state of attractive Fermi-particles 
that the existence of an effective attraction between is thus unstable. The tendency to form bound 
the electrons in a metal leads to the formation of pairs will at absolute zero cause a change in the 
electron pairs in a singlet state. The exchange of ground state of non-interacting fermions under 
phonons between the electrons is the mechanism the influence of their mutual attraction. We shall 
that causes the presence of such an attraction. We determine the temperature at which the transition 
consider in the present paper the phenomenon of to the superfluid state takes place and we shall 
superfluidity in a low-density Fermi gas. The main also study the characteristic singularities of the 
methodological difference in this case consists in vertex part of a Fermi system of weakly mutually 
that in the theory of superconductivity the transi- attracting particles at T = 0 which appear be-
tion temperature is expressed in terms of a quan- cause of the above-mentioned instability of the 
tity of the order of the Debye temperature w « JJ., usual ground state. For the sake of convenience 
which is used as the natural parameter for a cut- we shall start with the study of the vertex part at 
off, while in a low-density Fermi-gas the only absolute zero. 
small parameter is its density, or more accu- The vertex function r a{1yo<Pi• p2, p3, p4 ) is de-
rately, the quantity foP~/v, where f0 is the s- fined through the Fourier component of the two-
wave scattering amplitude for interparticle scat- particle Green's function 
tering, and Po and v are respectively the limiting 
momentum and the velocity on the Fermi surface. 

For our investigation it is convenient to use 
quantum field-theoretical methods. We shall as­
sume, starting from Cooper's idea, that the attrac­
tion between the particles leads to the formation 
of bound pairs. Such a pair is a Bose formation. 
The temperature-dependent Green's function of a 
free boson ® (pw) is of the form 2•3 

(iwn- E (p) + f!fl, Wn = 2nnT 

and for ~n = 0 becomes infinite as soon as the so­
called Bose condensation takes place [JJ. ( T c) = 0 ]. 

The two-particle Green's function plays the 
same role for a bound pair as the Green's function 
of a boson. If one studies the dependence of the 
two-particle Green's function on the total energy 
and momentum of the two particles (i.e., on the 
energy and momentum of the bound pair as a whole) 
one can find the temperature of the transition of the 
system into the superfluid state from the condition 

that this quantity should become infinite when the 
transition takes place. At lower temperatures 

(1) 

by the following relation 

Ga~y5 (p1, p2, pa, p4) 

= (2n) 8 G (p1) G (p2) [6 (p1 - p 3)6 (p2- p4) 6ay6~s 

- 6 (p1 - p4)6 (p2- pa)OasO~.,J 

+ i(2n) 4G (p1)G (p2)G (pa)G (p4)fa~.,s (p1, p2, pa, p4)6 (p1 

+~~~-~· 00 
The Hamiltonian of the interparticle interaction 

is of the form 

Hint = + ~ V (x - y) 'llt (x) 'lli (y) \jl2 (y) \jl1 (x) d4 x d 3y, 

V (x- y) = V (x- y)6 (xo -yo). (2a) 

It was shown by Landau4 that the singularities of r 
for small values of the momentum transfer ( q = p3 

-Pi or p4 - Pi) are connected with the existence of 
so-called "zero sound." We shall study the singu­
larities of the vertex function* as far as the vari-

*A study of these singularities in general form in the theory 
of a Fermi liquid was made in an unpublished paper by A. A. 
Abrikosov, L. P. Gor'kov, L. D. Landau, and I. M. Khalatnikov. 
In the model considered the same approach allowed us to obtain 
more detailed results. 
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FIG. 1 

able q = p1 + p2 is concerned. To do this we con­
sider the diagrams of the first orders in perturba­
tion theory (Fig. 1). 

Singularities of the "zero-sound" type are con­
nected with the diagrams of Fig. la, c. As far as 
the diagram of Fig. lb is concerned, it contains an 
integral of two Green's functions of the form 
f~j G ( k) G ( q- k) d4k. Substituting here for G ( k) 
the Green's function of a perfect Fermi gas 

G (k) = [w + 11- e (k) + i6sign (e (k)- f1)]-1, 

we get after integrating over the frequency 

2 ·r2 \ d"k 
- m o) e-t-2!l-e(k)-e(q-k)-t-i6' 

e(k)>fl, e(q-k)>fl, 

2 •t2 \' d3k 

The above-mentioned divergence in the large 
momentum region can be removed as follows. We 
define a vertex function for particles, interacting 
in vacuo, using the equation ( Belyaev5 and Galit­
skii6 introduced this quantity) 

r~~yS (p!' fJ2, pa, P•) = r~}1ys (pt, pz, p3, p4) 

+ 2 (~:rr)• ~ r~1d;" (Pt. P2• k, q- k) a<o> (k) a<o) (q- k) r~~ys 

X (k, q- k, Pa.P4)d4k, (5) 

where r~hy0 (p 1 , p2, p3, p4 ) is the term of first 
order in the interaction, which is equal to 
V(p3-p1)6ay6J3o- V(p3-p2)6aoOJ3y while 
G<0>(k) is the vacuum particle Green function: 

G<o> (k) = (w - e (k) + i6)-1 . 

If we write (5) in the form 

f~\~-1 s (p1, p2, pa, P•) = Lr ~~yo (p1, p2, pa, P•) 

= f~0dys (pt, p2, pa, P•) - 2 (~:rr)• ~ f~1J; 11(Pt, P2, k, q- k) 

X G(O) (k) G(O) (q- k) rt~yo (k, q- k, Pa. p.,) d4k 
m 0 .l e-t-2!l-e(k)-e(q-k)-i6' 

and then subtract from both sides of Eq. (4) the 
(3) integral 

This integral diverges at large k; this is connected 
with the fact that in that range it is the same as the 
Born correction to the scattering amplitude of two 
particles in vacuo. One can thus remove the di­
vergence for large k by renormalizing the scat­
tering amplitude. However, at small q «Po and 
e: « J.L the result obtained diverges logarithmically 
also near the Fermi surface for k ,.... p 0• The inte­
gration in (3) leads thus when q and e: are small 
to a logarithmic term of the order ( p~f~ /v) x 
ln {qv/J.L, e:/J.L}. The large magnitude of the loga­
rithm can be compensated by the small parameter 
P~o/V « 1. 

To evaluate the vertex part in that range of 
{ qv, e:} values perturbation theory turns out to 
be insufficient and we must sum a whole "ladder" 
of diagrams shown in Fig. lb. We write down the 
equation for the vertex part in such a way that we 
explicitly separate off special integrations of the 
type (3): 

r~~yo (pt, fJ2, pa, p4) = ra~yo (pl, fJ2, pa, p4) 

+ 2 (~:rr)• ~ f ~~;~ (p1 , P2• k, q- k) G (k) G (q- k) r~-r.yo (k, q 

- k, Pa• P4) d4k, (4) 
,.... 

where r af3yo(Pt• p2, p3, p4) is the totality of those 
diagrams which are irreducible in the sense that 
they cannot be divided by a vertical line into two 
parts which are joint by two fermion lines directed 
to one side. 

2 (~:rr)• ~ rf!J;,, (pr, P2• k, q- k) a<o) (k) G(IJ) (q- k) f~11yo (k, q 

- k, p3, p.) d4k, 
we get 

LI'~;M (p1, p2, pa, P•) = Lf~0J,-s (p1, p2, pa, P•) 

+ r:(;yS (pt, /)2, pa, P•) 

+ 2 (~:rr)• ~ Lr~~]~ 11 (p11 pz, k, q- k) [G (k) G (q- k) 

- G(O) (k) G(ll) (q- k) I r ;<,yo (k, q- k, Pa. p.) d4k 

+ 2 (~:rr)• ~ r:~~~ (Pt, P2, Pa. P4) G(k) G (q- k) 

X r ~T,yO (k, q - k, pa, P•) d4k, (6) 

"'* where r af3yo ( p1, p2, p3, p4) stands for all irreduc-
ible diagrams from the second order in the inter­
action onwards. 

We get the vertex part r af3yo ( Pt• P2• P3• P4) up 
to terms of order p~fVv inclusive. It is clear that 
as the diagrams for r do not contain logarithmic 
integrations we can restrict ourselves in this order 
in the expression for r* to terms of second order 
in f0 (Fig. 2) 

Applying to both sides of Eq. (6) the operator 
L -i we are led to the following equation 

) r(o) ( ) i \' r(o) r o:~yo (PJ' fJz, Pa. {h = ~~yS Pt> P2> fJ3, P• - ~ (:!.:rr)") CL{j~·r, 

/(fJJ, P2• k, q- k) (G (k) G (q- k)- G(O) (k) G(O) (q- k)] 

(7) 
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FIG. 2 

Within the accuracy which we have adopted Lr * 
= r * and we have neglected in the terms which do 
not contain logarithmic integrations quantities of 
second order in f0• As far as r<O> is concerned 
in the integral on the right hand side of (7), we 
must evaluate it up to terms in second order in f0: 

l'~~J;11 (pl, Pz, k, q- k) = V (k- P1) 6"-~oB<.- V (k- p2) o"-'-613~ 

-- 2 (~n) 4 ~ [V (1-pl) V (k-1) 

--- V (1-pz) V (1-q+k)]G<ol (l) a<ol (q-l)o"-~o0,,d4l 

- 2 (~n)4 ~ [V(I-p1) V (k-q-j-1) 

+ V (1-pz) V (k--1) 1 a<o> (l) a<o> (q-l)o"-"o0~ d4l. (8) 

If we use the relation between the scattering 
amplitude for two particles in vacuo and the inter­
action potential 

V (k _ k ) = f (k k ) + _!!!__ (' f (kr, I) f* (k2. I) d31 (9) 
1 z 1' 2 (2n)s j [2- kz- ib 

2 

and the well-known relation between the imaginary 
part of the scattering amplitude and the effective 
scattering cross section 

Im f (k1, kz) = - ~~2 ~ dn f (k~> k1n) f* (k 2 , k1n), (10) 

we get after substituting (9) and (10) into Eq. (8) an 
expression for r~~; 17 <Pi> p2, k, q -k): 

r~oJ~"fl (Pl> Pz· k,q - k) = t 0 ( 1 - if oPg I 4nv) ( 0"-~0(J"fl - 0"-110/3~). 
(11) 

When one uses a Green's function in G (p) one 
should, strictly speaking, evaluate its value up to 
terms of second order in f0• Galitskii6 has, how­
ever, shown that the correction of second order in 
f0 to the perfect Fermi-gas Green's function leads 
merely to a renormalization of the Fermi energy. 
We shall thus in the following use the perfect 
Fermi-gas Green's functions assuming JJ. to be 
the renormalized Fermi energy. 

The contribution to ri'¥{3; 17 (p1, p2, k, q -k) in 
the intervals E « JJ. and q «Po which are of in­
terest to us is equal to 

if2 

(2n~' ~ G (l) G (PI- k + l) d4l (o"-~OfJ 11 - o"- 11613;). 

~ubstituting r~~; 17 (p 1 , p2, k, q -k) and 
r~{3;ry<P1• p2, k, q- k) into Eq. (7) and taking 
into account that of the terms of second order in 

f0 we need only the logarithmic ones, we get the 
following expression for the vertex function: 

r "-/3Y5 (pl, Pz, Pa. P•) = f~0Jy5 (PI• pz, Pa. P•) 

x {1- (~~")• (1- ~::V~)~[G(k)G(q-k) 
- a<o) (k) G(O) (q- k)] d4k 

+ (2~)s ~ G (l) G (Pl- k + l) G (k) G (q -k) d4l d4kr 
(12) 

The first of these integrals gives in the denom­
inator of (12) a term 

_ pgfo ( 1_ifoPg)(2 +Ine2-q2v2 -j-ib +~Ine-j-vq-ib) 
(2n)2 v 4nv 64~-t2 qv e- vq + ib · 

As we need only take into account the logarithmic 
term we must, when evaluating the second integral, 
put P1 = k =Po. E1 = w = JJ. after integrating over l 
and we must average over the direction of the vec­
tor k. We get 

2fgp~ 82 _ q2v2 

3 (2n)' 02 ( 1 + 2 In 2) In 641!2 

Substituting the results of these calculations 
into (12) we get 

r af3·r5 (pl, P2• Pa. P•) = - (2n)2 vp"Q2 (OayO~s 

-6"-sO~y) {(2n)2 vI p~ I fo 1- in + ~ - 1: In 2 

..L In e2- q2v2 + i~ + ~In e + qv- ~b j-1. (13) 
1 1!2 qv e- qv + tb J 

We shall consider (13) to be the analytical con­
tinuation of r a{3y6 (p1, p2, p3, p4) in the upper half­
plane of the variable E. Let q = 0 to begin with. 
We see that r a{3y0(p1, p2, p3, p4 ) has a pole at 
E0 =i~, where ~=JJ.(2/e) 7/3exp{-2.;v/lfoiPH· 
If we express the vertex part r a{3yo(P1• P2• Pa. P4) 
in terms of Eo it has the form 

r CJ./3y5 (PI• P2• Pa. P•) = - (2n)2 vp"Q2 (o"-Yo/35- 6"-s013y) 

X {- 2 1 In e2-q2v2-j-ib +~In e + vq- ib }-1. 
1 82 qv e- vq + tb 

0 

For small qv « ~ the position of the pole E ( q) 
approaches the real axis: E (q) = i~ (1-q2v2/6~2 ). 
When q increases further I E ( q) I decreases and 
it tends to zero when v~ax = e~ as 

e = (2e~i/n)In (eMvq) :::::::: 2e~i (qmax- q)/'ltqmax· 

The Cooper phenomenon, i.e., the instability of a 
fermion system when there are attractions between 
the particles, leads thus to the occurrence in the 
vertex part of poles in the upper half-plane of the 
complex variable E = w1 + w2• Only those particles 
for which the total momentum is relatively small 
( q « Po) will here display a tendency to form 
bound pairs. The quantity ~ has clearly the 
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meaning of the reciprocal of the relaxation time 
of the system. 

We turn now to the problem of determining the 
temperature at which the system makes the tran­
sition to the superfluid state. Because we cannot 
apply the usual technique at finite temperatures 
we must use the Matsubara quantities. 2•3 In the 
Matsubara method we have instead of (2) the fol­
lowing connection between the two-particle Green's 
function and the vertex part 

@l"~YB (w1p1, w2p2, wapa, ffi4P4) 

= (2.rt) 3T-1 {(2.rt) 3T-1 [@l (w1p1) @l (w2p2) 

X Ow,w,6 (p1 - P4) 6"s0r>-, - @l (w1p1) @l (w2p2) 6w,w,6 (p1 

- pa)6"y6{lsl - + @l (w1p1) @l (w2p2) @l (wapa) @l (w4p4) 

X stct{lyS (w1p1, w2p2, wapa, ffi4P4)} 

X 6w,+w2-w,-w, 6 (Pl + P2 - pa - P4). (14) 
At the beginning of this paper we have already 

remarked that one can define the critical tempera­
ture as the temperature at which the Bose "con­
densation" of bound pairs sets in. At that point 
the two-particle Green's function. or what amounts 
to the same, according to (14), the vertex part, 
tends to infinity for the first time. We note that 
the dependence of the temperature dependent quan­
tity ::!:a,sy0(wJ.P1, w2p2, W3P3, w.u>4) on the variable 
E = w1 + w2 is defined only in the discrete points 
En = 21TI1Ti, n = 0, ± 1, ± 2,. . . At the critical tem­
perature the position of the pole is E = 0. More­
over, it is clear from similarity considerations 
that the Fourier component of the Matsubara quan­
tity '1:a,sy0 (w1 + w2 = 0, p1 + p2 = 0) becomes infi­
nite at the transition. 

The remainder of our discussion will refer to 
the case E = w1 + w2 = 0, q = Pt + p2 = 0. 

The diagram of Fig. lb contains in second order 
in f0 an integral over the product of two Matsubara 
Green's functions @l ( wk) for the pe.dect Fermi 
gas of the form 

2.rtifgT ~ ~ @l (wnk) @l (-ffin, - k) d3k, 
"'n 

which after summation over wn becomes 

·r2 c ~ th 11 - € (k) 
.Ttl 0 .) f1 - E (k) 2T • (15)* 

The integral (15) diverges for large k. The di­
vergence of this integral can be removed in the 
same 'Way as at absolute zero by renormalizing 
the scattering amplitude. The integral diverges, 
however, also near the Fermi surface where its 
magnitude is ,.., ( f~~ /v) In ( T/t.t) which is compen­
sated by the smallness of the parameter foPVv 

*th =tanh. 

« 1. To evaluate 'l:a,Byo<wtPt• W2P2• W3P3• W4P4) 
we must therefore again sum a ''ladder" of dia­
grams such as Fig. lb. We write down an equa­
tion for '1: a,Byo ( w1p1, W2P2, w3P3, w41>4 ) which is 
similar to Eq. (5): 

::!:o:{l-,B (w1p1, w2p2, W3ps, ffi4P4) 

= i"IM (w1p1, (tl2P2, wsps, ffi4P4) 

- 2 (~rr.)3 2J ~ stcxi3~1l (wlpl, WzP2• Wnk, 8-- ffin, q- k) 
"'n 

X @l(wnk)@l(E-ffin,q-k) 

X '1:;11-,s (wnk, e- Wn, q - k, wsps, ffi4P4)d3k. (16) 

We obtain an equation to determine the tempera-
ture at which the transition into the superfluid 
state takes place from (16) if we take into account 
that % has no singularities of the kind (15) and 
that we need only to know of the terms in ~<2 > 
that one which gives a contribution ..... ( f~3 /v2 ) x 
ln(T/t.t). Nearthepointwhere 'l:a,Byo(E,q) be­
comes infinite Eq. (16) becomes of the form 

1 =- (;~)3 2J~ V(p1-k)@lfwnk)@l(-ffin,-·k)d3k 
"'n 

(17) 

We have here taken into account that 'l:~~yo 
( WJ.P 1, W2P2, wnk, - wn, - k) is independent of the 
fourth components of the momenta and is thus the 
same as the quantity r~~y0 (p 1 , p2, k, -k). 

As at T = 0, the divergence in the first integral 
irr (17) far from the Fermi surface can be removed 
by renormalizing the scattering amplitude; after 
that Eq. (17) is reduced to the form 

1 = _ ~ ( 1_ if0p~) \ [ th (fl-E(k)) /2Tc)1 
(2rr.)3 4rr.v .) 11- e (k) 

1 Jd3k Tc "1\-(2) k + 11- e (k) + i6 - (2:rt)S ..:::..J.) '1: (<il1P1, ffi2P2, ffin ' 
"'n. 

(18) 

The contribution to ;r<2> which contains all irre­
ducible diagrams of second order in the interaction 
is given by the expression 

~~~~ ' 
- (2rr.)3 ..:::..J.) @l (en, 1) @l (En+ ffi1- ffin, I -r- p1- k) d3 l. 

'n 

The first integral in (18) gives the contribution 

_ p~fo ( 1_ ifoPg) (In Srfl _ 2 _ .!!!__) , (19) 
~~ ~v T~ 2 

where In y is Euler's constant. 



1022 L. P. GOR'KOV and T. K. MELIK-BARKHUDAROV 

The evaluation of the second integral in (18) 
proceeds taking the same considerations into ac­
count as at the absolute zero. The result of 
these calculations is 

4{2 
Po o I _j_ 2 I 2 I sw 

- 12 • • ( ' n ) n -T . n v en 

Substituting (19) and (20) into (18) we get 

_ 2n2v = In [Ten(.!:._). '/,J 
I to I P~ 1!1 ' 2 . 

(20) 

The temperature of the transition into the super­
fluid state is thus determined by the relation 

Te = (WI :rt) (2 I e)'/, exp {- 2:rt2v I p~ I fo \} 

or, Tc = yD./7r, where D. is the previously deter­
mined quantity which has the meaning of the re­
ciprocal of the relaxation time of the system. 

It is of interest to note that as in the model 
considered the integration practically is per­
formed near the Fermi surface the relation be­
tween the "gap" width and the transition tempera-

ture must be the same as in the theory of super­
conductivity, and it follows thus that the gap width 
at T = 0 is equal to the reciprocal of the relaxa­
tion time of the system. 

In conclusion we express our gratitude to 
Academician L. D. Landau for valuable discus­
sions of the results of this paper. 
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