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We have studied the influence of electron scattering on the absorption of sound by metals in 
strong magnetic fields for the case of large spatial dispersion. We considered the case where 
the electron scattering is caused by their interaction with neutral impurities. 

GuREVICH, Firsov, and the present author1 Assuming existence of an electron relaxation 
studied the deformation absorption of sound in time, we showed that collisions are not important 
metals for the case of a strong magnetic field and that the oscillations remain gigantic for w 
Q » kT and a long mean free path of the con- < v, provided the inequality 
duction electrons ( Q is the electron Larmor 
frequency, T the temperature, and k Boltzmann's 
constant).* We showed that the theory under those 
conditions should essentially be a quantum-theoret
ical one and that when the magnetic field changes 
the sound absorption may show gigantic oscilla
tions. 

The cause of these oscillations is the following 
one. In the case Q » kT in the region of the tail 
of the Fermi distribution, which is responsible for 
the transport properties, only narrow ranges of 
kz-values (the component of the quasi-momentum 
in the direction of the magnetic field H) turn out 
to be allowed, while for Q « kT all values of kz 
are allowed. The position of these ranges on the 
Fermi surface is determined by the value of H 
and when H is changed other values of kz become 
allowed. On the other hand, when the electron 
mean free path is sufficiently large those electrons 
which move in phase with the sound wave will play 
the main role in the absorption of sound. Other 
electrons can absorb sound only during collisions 
with scatterers, and their contribution to the ab
sorption is proportional to the small quantity 1/ Kl 
(reference 2) ( /C is the sound wave vector and l 
the average mean free path of the conduction elec
trons ) . When the magnetic field is changed the 
position of the allowed kz-intervals changes, and 
if the angle between the directions of /C and H is 
considerably different from a right angle the elec
trons moving in phase with the sound wave turn out 
to be sometimes in the region of the tail of the 
Fermi distribution and sometimes outside it. This 
leads to the gigantic oscillations in the absorption 
coefficient. 

*We use a system of units where 1r = c = 1. 

where t is the chemical potential of the metal, 
w the sound frequency, and v the collision fre
quency of the electrons with the scatterers, is 
satisfied. 

The present paper is devoted to a study of the 
influence of scattering of the electrons on the ab
sorption of sound by metals for the case of a 
strong magnetic field Q » kT and a strong spatial 
dispersion Kl » 1 (l = VF/v; VF is the Fermi 
velocity). We consider the case where the trans
verse electrical fields which occur when the crys
tal is deformed do not play an important role, so 
that we can neglect them. We assume that the 
electron scattering is caused by their interaction 
with randomly distributed fixed centers, the radius 
of action of which is small compared with their av
erage mutual distance and with the electron wave 
length. For the sake of simplicity we restrict our 
consideration to that of an isotropic quadratic elec
tron spectrum and do not take the electron spin 
into account. 

Let the electron Hamiltonian when there is no 
sound be Je = Je0 + V, where 

:Jeo = (p- eA) 2/2m, 

here A is the vector potential of the magnetic field 
H, p the electron quasi-momentum operator, m 
the effective mass, and Vj the potential of the inter
action between an electron and a scattering center 
at rj. 

The perturbation caused by the interaction of 
an electron with the sound wave is taken to be of 
the form 

1014 
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U0 is a Hermitian operator which, generally speak
ing, is a function of the electron quasi-momentum 
operator. In the case of inductive sound absorption 
the perturbation has, for instance, the form AJ..I ( t) JJ..I 
where JJ..I is the operator of the J,.t-th component of 
thecurrentdensity, A(t)= [Hxu(t)], where u(t) 
is the displacement vector in the sound wave. 

In the case of deformation absorption 

Je'(t) =A;kUik(t), (3) 

where Uik = Y2 ( Bui /Bxk + Buk/Bxi) is the deforma
tion tensor of the crystal, and where the tensor Aik 
in general depends on the quasi-momentum p. In 
the present paper we shall consider the deformation 
absorption of sound by metals with a low carrier 
concentration (such as bismuth) for which Aik 
= const. 

The energy absorbed by the electrons per unit 
time is given in the first Born approximation in 
JC' by the formula2•4 

l't(J)......, 
Q = 2 L..J <I U ba 12 6 (wab + w) [fa {I -h)- {b (I -fa)]). 

ab (4) 

Here a and b characterize the stationary states 
of the Hamiltonian JC, Wab = Ea- Eb is the energy 
difference, and fa is the probability of finding an 
electron in the state a. Since the scattering of 
electrons by fixed centers is elastic and tempera
ture-independent, fa is simply the Fermi function 
of the argument ( Ea- t) /kT. The pointed brackets 
( ... ) indicate here and henceforth an average over 
the positions of the scattering centers rj. 

One easily writes Eq. (4) in the form 
+oo 

Q=n;) ~ dE!f(E)-f(E+w)]l(E), (5) 
0/2 

I (E) =~<I Uba 126 (E- Eb +w)6 (E- Ea)). (6) 
ab 

Using the identity 

6 (x) =__.!__lim (-1-- - 1-) 
2ni <-++o x- ie x + ie 

and writing (6) in operator form we find that I (E) 
is a linear combination of four terms 

(2~)2 Sp<{E-)c±ie u+ E+oo-1.Y£±ieu}), (7) 

which can conveniently be evaluated in the JC0 rep
resentation. The eigenfunctions of the Hamiltonian 
JC0 are characterized by the magnetic quantum num
ber n, the component of the wave vector along the 
direction of the magnetic field kz, and X, the co
ordinate center of rotation of the electron. 5 The 
totality of these quantum numbers will be denoted 
by indices a, {3, ••• 

To evaluate (7) we need the exact Green's func
tion 

Gila (u) =((~I u __: .7£ j a)), 

averaged over the positions of the scatterers 
(u = E + iE ). We have shown6•7 that G (u) can 
be written as a series 

1 ......, 1 j 1 
G (u) = u- .Uo + ,LJ u- .Uo (T (u)) u- .Uo 

I 

(8) 

"" 1 <i 1 k > 1 + £J ~ T (u)-;;;;;--- T (u) -;;;;;--- + ... , U-Jvo U-ovo U-ouo 
i+k (9) 

i · nr• nr 2nfjm 
Tflcz(E+te)= r!l(ri)rcz(ri) 1 +iK(E)f · (10) 

Here "IJ1 a ( r) is an eigenfunction of JC0 and f is the 
amplitude for the scattering of a zero-energy free 
electron by the potential Vj, 

N 

K (E) = ~ mQ , (11) 
n=O [2m [E- Q (n + Ij2)]]'/, 

where N is that integer which leads to one imagi
nary term in the sum (11). Tba<Ea + iE) is the 

amplitude for the transition from the state a to 
(3 when an electron is scattered by the j-th center. 

In the series (9) each term of the expansion in 
powers of T is a sum over all possible scatterer 
numbers j, k, l, ... except for terms where any 
two adjacent numbers are the same. One can 
show that cross terms of the kind 

1 Ti (u) - 1- Tk (u) - 1- Ti (u) - 1-
u-.Yto u-.7£0 u-.Yto u-.Yto 

k 1 
X T (u)-;;;;;-

u-ouo 

correspond to the simultaneous scattering of an 
electron by two centers j and k, and give a small 
contribution to G ( u ) if f « A.; f « a, and n « E, 
where A. is the electron wavelength and a the 
mean distance between the scatterers. We shall 
therefore drop such terms. 

We introduce the operator for the scattering 
by the j-th center, averaged over the positions of 
all the other centers: 

-r:i (u) = Ti (u) + Ti (u) [<u ~ .u)-u-1.7£0 J Ti (u) 

+ Ti (u) [ <u_:.Y£)- u-1.Yto J Ti (u) [ <u_:.Y£) 
1 ] j -u-i!to T (u)+.... (12) 

To evaluate the matrix element ~(3a(u) we must 
know the asymptotic expression of the function 

. 2ni ...._, • ( / < 1 ) q(r,r';u)=m;?;'¥J3(r') ~ u-/lt 

--1 -1 a) '¥a(r) 
u-.Yto J 

(13) 
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as I r' - r I ,..... r 0, where r 0 is the action radius of 
a scattering center. It is fairly obvious that at 
such small distances this quantity is independent 
of the coordinates (one can choose the gauge of 
the vector potential A in such a way). If we de
note it by q (E) and sum the geometric series 
obtained from (12) we find 

Tba.(E + ie) ="If~ (ri) "lfa.(ri)2l1f/m[l +i !K (£) 

+ q (£)]fl. (14) 

One can easily express the Green's function 
Gaf3(u) in terms of Tj(u): 

1\a./3 ~ 1 . ( ) 1 
G@a. (u) = u- Ea.+ f u- E~ (Tba. u ) u- Ea. 

+ ~ ~ ____!___E <T~. ( U) ____!___E T~ ( U )> ___!_E + . . .. 
j+k & U- @ pU U - & uC1. U- C1. {15} 

There are now no longer any two numbers of scat
tering centers j, k, l, ... equal in any term of the 
expansion in powers of T (u). The average over 
rj of the product of several different Tj ( u) is 
thus equal to the product of the averages. Taking 
into consideration that 

~("If~ (ri) "If" (ri)) = n/la.@, 
j 

where ns is the number of scatterers per unit vol
ume, and that according to the sum rule the quan
tity 
-2Im ~ (T~a. (£ + ie)) 

j 

= -(4nfnslm)Im [1 + i (K +q)f]-1 = v (£) (16) 

is the total probability that an electron of energy E 
is scattered per unit time, we get 

G@r~. (£ + ie) = ()a.@ [£- E" + iv (£)/2]-1 • (17) 

We have dropped Re ~j (Tha) which leads to are
normalization of the energy. 

We can now use (17) to verify that the asyin
ptotic expression of q ( r, r': u) at small distances 
is indeed independent of the coordinates. A direct 
evaluation leads to the equation 

q(E) = K !E +iv (£)/21-K (£), (18) 

the form of the function K (E) was given in the 
foregoing by (11). Substituting this expression for 
q (E) into (16) we get the following equation for 
v (E):* 

v(£) = vo(£)(2m£)-'l• ReK [£ + iv (£)/2], (19) 

where 

vo(£) = 4l1f2(2£/m)'/, n5 

is the scattering probability when there is no mag-

*This equation is similar to the one obtained by Bychkov" 
for lm ka.Ga.a. (u). 

netic field. In the denominator of (19) we neglected 
the quantity Kf as compared to unity. 

The equation we have obtained gives us immedi
ately the value of v (E) provided the condition 

Q ~ (Evo)'l• (20) 

is satisfied. Indeed, in that case 

K (E + iv/2)-:::::::- (2m£)'/, 

and (19) leads to the equation v (E) = v0( E). If, 
however, condition (20) is not satisfied, v (E) in
creases when E-. Q (n +% ). 

In the following we shall be interested in the 
case v0 « kT. Condition (20) is then replaced by 
the less restrictive one: 

Q ~ (~kT)'Iz, (21) 

which is easily satisfied in metals. We shall thus 
assume that v (E) ~ v0; the increase of v (E) in 
energy ranges which are small compared to kT 
will not show up in the final results because of 
the averaging over the Fermi distribution. 

We shall not consider the matrix elements 
Ua'a· If K II H, 

(n'X'k:JUjnXkz) = Uo6n'n6x·x()k, k+ · 
z' z x 

If K makes an angle with H the matrix elements 
of U which are nondiagonal in n will be different 
from zero. One sees, however, easily that if 

(22) 

where K 1 is the component of K perpendicular to 
H, and R the Larmor radius of the electron, these 
matrix elements are smaller than the diagonal 
ones in the ratio (KlR)In'-nl. The same occurs 
in the semi-classical approximation Q « t under 
condition (22) for an arbitrary electron spectrum 
and an arbitrary dependence Aik = Aik(P ). For 
the sake of simplicity we consider the case K II H. 

If we use the Green's function (17) and the tran
sition amplitude (14) we can write each of the terms 
of (7) as a power series 

Sp {E - ~ + ie U+ E + w _1_ H-ie U} 

_ ", 1 u+. 1 
- LJ E- E + ivj2 a.a. E +w- Ea.'- iv/2 

a.a.' ex 

X { U a'a. + ~ ~ ( '~'il' E + w- ~ , - iv ;2 
j @il' @ 

X Uro-,3 E- E!l1+ iv(2. T~"> -\-- .. ·} . (23) 

An estimate of the second term within the braces 
for the case Kl » 1 shows that except for a small 
neighborhood around E = Q ( n + %) it is of the 
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order V0 /Kl, i.e., the series (23) is an expansion In all cases those electrons from the region of 
in the small parameter 1/Kl.* We have thus the tail of the Fermi distribution which satisfy the 

1 (E) (£) condition 
I (E) = (2n)• ~ I U oc'oc 1

2 (£ -; )' + v2/4- (E - E •v+ w )2 + v2/4 ' 
aa' ex a 

(24) 

and summing over X and kz and neglecting w we 
get 

N-1 ,, 

I (E) Vo I U l2 (S )'/ Q "" v (£) [£- Q (n + r;2)]-;' 
=(2n)3 0 m 'm L.l 2x2m 1 [£-Q(n+ 1f,)J+v 2 ' 

n=o 
(25) 

where V0 is the volume of the crystal. It is clear 
that in the case 

(26) 

it is sufficient to restrict oneself in (25) to the one 
term for which [ E- &2 ( n + %) ] is a minimum. 
When H changes, this quantity and with it the en
ergy Q absorbed by the electrons, oscillates 
strongly and this causes the gigantic oscillations 
in the absorption of sound. 1 

In the opposite case when 

(27) 

many values of n are important in Eq. (25) and to 
evaluate I (E) we can use the Poisson summation 
formula 

00 1 +ocr 
~ cp (n) = 2 cp (0) + ~ ~ dncp (n)exp (2:rtikn). 
n=o h=-ooo 

If we use this formula we get easily the final ex
pression for the sound absorption coefficient 

2rc2nkT/Q 
An= sh (2n 2nkT/Q) ' 

r = m2\ Aik uik I' (28)t 
0 2np 1 u I' sx ' 

where p is the crystal density, s the sound veloc
ity, and r 0 the sound absorption coefficient when 
there is no magnetic field. 

*In the case x 1 H, the second and later terms in (23) are 
not small compared to the first one and one must solve the in
tegral equation obtained from (23) to evaluate I(E). 

tsh =sinh. 

(29) 

play the main role in the absorption of sound; in 
Eq. (29) Zz = Vz /v, Vz is the z component of the 
velocity. In the case (26) there are, depending on 
the magnitude of the magnetic field either a group 
of electrons satisfying condition (29) or there are 
no such electrons on the Fermi surface. This also 
causes the gigantic oscillations of the absorption 
coefficient. In the case (27) there is always anum
ber of electron groups satisfying condition (29). 
The relative amplitude of the oscillations is in 
that case thus small and is, as is usual in such 
cases, proportional to the square root of the num
ber of these groups. 

In conclusion I express my gratitude to Yu. A. 
Bychkov and L. D. Landau for valuable discussions. 
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