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We compute the dependence of the energy spectrum of the excited states of odd nuclei with 
spin% in the ground state on the ratio of the rotational energy to the coupling energy be­
tween the external nucleon and nonspherical part of the core potential. 

INTRODUCTION 

THE presence of an "energy gap" in the spectrum 
of single-nucleon states of even-even nuclei facili­
tates the separation of collective excitations that 
correspond to the rotation of the nucleus and to the 
change in the form of its surface. In odd nuclei 
the energy of single-nucleon excitations differs 
little from the energy of collective excitations, 
and they can therefore be separated only in some 
particular cases. The interaction between rotation 
of the nucleus and the motion of an external nu­
cleon changes the structure of the rotational spec­
trum corresponding to the adiabatic approximation. 

To investigate low excited states of odd atomic 
nuclei we consider a nucleon model consisting of 
a core and one outer nucleon. We assume that the 
form of the nucleus differs little from an ellipsoid 
of revolution (low nonaxiality). 

Nuclei with ground-state spins % or % call for 
a special analysis (see, for example, references 1 
and 2). We shall therefore investigate in the pres­
ent article the case of nuclei whose ground-state 
spin is%. The same method can be extended to 
include nuclei with larger spins. It will be shown 
that the sequence of spins of the first excited states 
and the ratio of their energies are determined by 
a single parameter, corresponding to the ratio of 
the rotational energy to the energy of interaction 
between the external nucleon and the nonspherical 
part of the potential of the nuclear core. 

1. ENERGY STATES 

The Hamiltonian operator of a system consist­
ing of a nuclear core and one nucleon can be writ­
ten in the form 

H = Hp + H,. + H;~t· (1.1) 
Here Hp is the Hamiltonian operator of the inter­
nal state of the nuclear core and the external nu­
cleon in a centrally-symmetrical field; 

(1.2) 

is the rotational-energy operator, where Ii and Ji 
are respectively the projections of the total angular 
momentum and of the momentum of the outer nu­
cleon on the coordinate axes fixed in the nucleus, 
and ai are quantities determined by the moments 
of inertia of the nucleus; 

H;nt = - T~ {cos r (3{~-'-- j2) + V3 sin r ({i- j~)}. (1.3) 

The Schrodinger equation with the Hamiltonian 
operator (1.1) reduces to systems of algebraic 
equations for each value of the total momentum I, 
if we seek the solution in the form 

nr (/)-"" AI~ ,/2I+1{DI j -L( 1)1-jDJ i r ~ - L...J KD. V 16:n2 mKc:pn 1 - m,-Kc:p_,J, 
K,D.>O (1. 4) 

where n~nK are generalized spherical functions 
dE)termining the orientation of the nucleus in space; 
<Ph are the wave functions of the external nucleon 
in the coordinate system fixed in the nucleus. 

In the case of small nonaxiality y ~ 0 and we 
can retain in the operator (1.3) only the first term, 
putting cos y ~ 1. We can then put in (1.2) a1 = a2, 

and finally it is necessary to put in (1.4) K = n, so 
that the double summation reduces to summation 
over K only. If we use the matrix elements of 
operators (1.2) and (1.3) with wave functions (1.4) 
as given by 0. Bohr, 1 the problem of determining 
the energy of the excited states of the nucleus re-
1uces to a solution of secular equations of the type 

! (f i H, + H;nt IK>-E (/) {)lK = 0 (1.5) 

for each value of the total angular momentum I. 
Equation (1.5) will contain only two parameters: 

D = a1 + a2 and T{3. Thus, the excitation energies, 
measured in Tf3 units, depend only on one param­
eter ~ = D/{3T. The figure shows the results of 
the calculations for the case of nuclei with j = %. 
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In using the figure, it is necessary to reckon 
the energy from the first line corresponding to a 
nuclear ground-state spin %. When ~ < 0.25, the 
spectrum of the excited states breaks up into three 
bands. The first band with spin sequence%. %. %, 
1Y2, and 1% can be called the "main rotational 
band." However, the rules governing the spacing 
of these levels differ from the rules derived from 
the adiabatic theory of rotational states for axially­
symmetrical nuclei: 

EJ =A {I (I+ I) -/0 (/0 + I)}. (1.6) 

In particular, when I = % the interval rule follow­
ing from (1.6) is 

£,;,: £,;,: £,/,: £.,1,: ••• = I: 2.29:3.86:5.76: ... 

Table I. Spins and energies (kev) of 
the levels of u233 

Theory I II Theory I (.;=0.25) Experiment' (.; =0.25) Experiment• 

% 0 5/2 0 512 342 I 5f2 341 
712 40 7/2 40 712 387 

I 

lf2 400 
% 92.5 % 92 912 405 312 417 
"/2 318 312 313 

I 

As can be seen from the figure, the relative 
distances between levels of the "main rotational 
band" depend on the value of ~· When ~ = 0.25, 
the interval rule for these levels reduces to 1: 2.3: 
4.0: 6.3, and when ~ = 1, the interval rule has the 
form 1: 2.1:3.9: 4.8. 

Tables I, II, and III list the theoretical and ex­
perimental values of spins and energies of the 
levels of the odd nuclei u233 , Np237 , and Th229 • 

The parameter ~ is determined from the first two 
experimental values of the energies of the levels 
with the same parity. 

2. PROBABILITIES OF ELECTROMAGNETIC 
TRANSITIONS BETWEEN EXCITED STATES 

To each value of the total momentum I=%, %, 
... there will correspond, generally speaking sev­
eral energy levels which can be distinguished by 
the index T = 1, 2,... Consequently, the excited 
states will be characterized by two numbers, I 
and T. Knowing the energies EIT• we can readily 
calculate the coefficients AJl = AflK, which de­
termine with the aid of (1.4) the wave functions of 
the excited states of the nucleus, and then calcu­
late the probabilities of electromagnetic transi­
tions between these states. 

In the case of nuclei with small nonaxiality, the 
operator of electric quadrupole transitions has the 
form 

(2.1) 

where e is the unit electric charge and Q0 is the 
internal quadrupole moment. The reduced proba­
bility of the electric quadrupole transitions is ex­
pressed in terms of the coefficients AJl with the 
aid of the formula 

B (£2; h:~l'-r:') = 5:~~~ 
1 
~A~,· A~T (2/0K ll'K) r (2.2) 

The operator of magnetic dipole transition is 

(2.3) 

Table II. Spins and energies (kev) of levels of Np237 

Levels with positive parity Levels with negative parity 

Theory (.; = 0. 30) I Experiment• Theory (.; =0.45) I Experiment• 

5f2 0 512 0 5f2 0 512 0+59.6 
_7/2 33.2 7!2 33,2 712 43.4 712 43.4+59.6 
9/2 76.7 "lz 76,4 % 99.5 9/2 98.9+59,6 
lf2 324 lf2 332.3 11/2 173 11/2 165.4+59.6 
512 352 512 368.5 "12 213 3/2 207,9+59.6 
s;2 390 "/2 371 5/2 226 - -

13f2 245 13/2 345.4+59,6 
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Table ITI. Spins and energies (kev) of levels of Th229 

Levels of positive parity 

Theory ((; =0. 25) 

5/2 0 
7/2 42.3 
9/2 97.7 

11/z 169 
13/z 267 
3/2 335 
5fz 359 

Experiment• 

Levels with negative parity 

Theory ((; = 0. SO) / Experiment• 

5/z 0+29 
7/2 43+29 
9/2 97+29 

11/z 166+29 

Table IV. Reduced probabilities of E2 and M1 transitions 
for nuclei with ~ = 0.25 between the states IT- l'T' 

Transiti~n I 
I 't'~ 1'-r' 

8/21-+ 5/21 
9/21 ..... 7/21 
7(21 ..... s;21 
8/21 ..... 5/21 
8/21 ..... 7/21 

B (£2) 

e'Q~ 
0 

1.0 
3.0 
3.5 
0.041 
0.067 

B(MI) 

-
0.37 
0.27 
0.41 
-

where JJ.o is the nuclear magneton, gj and gR are 
respectively the gyromagnetic ratios for the single­
nucleon and collective motions, and jp, are the 
spherical projections of the operator of angular 
momentum of the nucleon and the coordinate sys­
tem fixed in the nuclear core. The action of the 
operator jp, on the wave function of the nucleon 
is determined by the equation 

l~"rrk=(-l)I'·ViU +l)(j1K +11. -f11iK)rr~>+K• 

With the aid of the functions (1.4) and the oper­
ator (2.3) we determine the reduced probability of 
magnetic dipole transition 

B (M1; fl: ...... /'T') = (3/4n:),u.~(g1 -gR)2 

I ~ I" f'<' I< ( 1 X L.l (-1) AK+p.AK j K + f1, 
p.,K 

-111 iK) (ll~-tK I I'. K + 11) 

- (-1(-1 A!;,''A!,: (j1-'M i j'/2)(1/- l'/211',-'/2) 12• 

(2.4) 
When summing over J1. and K in (2.4), it is 

necessary to sum over all positive values of K 

II Transition I' 
[-.;: ~ J'r:' 

B (£2) 

--;.Q2 
0 

B(MI) 

5122 ..... 3/21 3.0 0.22 
5/22 ..... 7f21 0.002 0.27 
s;22 ..... 5j,1 0.005 0.12 
5/22 ..... 9121 0.03 

when p, = 0 and 1, and to sum only over the val­
ues K 2:: % when J1. = - 1. 

Table IV lists the values of the reduced proba­
bilities of quadrupole electric and dipole magnetic 
transitions between the first collective excited 
states of nuclei with ground-spin state % and ~ 
= 0.25, as calculated from formulas (2.2) and (2.4). 
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