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The widths of the energy gaps in the spectrum of a quasiclassical particle in a one-dimen
sional periodic potential are calculated. The widths are found to be exponentially small. The 
factor in front of the exponential and the energy spectrum near the edge of the band are de
termined. 

THE energy spectrum of a particle in a periodic 
field cannot be determined in the general case. 
Any specific computation can be carried out using 
perturbation theory only when the period potential 
is much smaller than the particle energy. The pur
pose of the present paper is to find the spectrum in 
the quasiclassical approximation. 

We shall treat the one-dimensional case. The 
potential U is a periodic function of x with period 
L. The condition for quasiclassical behavior, kL 
» 1, where k is the quasimomentum of the particle, 
is assumed to be satisfied. If the energy of the par
ticle E is less than the maximum value Umax of 
the potential, the dispersion can be determined by 
the usual WKB method. 

However, if E > Umax• the usual WKB method 
leads to an incorrect result. In fact, the quasi
classical wave function (ti = 1) 

X 

\jJ (x) = p-'f, exp (i ~ pdx) (1) 

has the form of a Bloch wave, and the dependence 
of the energy on quasimomentum is given by the 
equation 

L 

kL = ~ pdx. (2) 

The spectrum thus obtained is continuous. How
ever, we know very well that in the spectrum there 
actually are energy gaps which cannot be found by 
using the ordinary WKB method. In fact, as we 
shall see from the following, the width of the energy 
gaps is an exponentially small quantity and cannot 
be found by expansion in powers of a small param
eter. 

The method developed below is analogous to one 
proposed by Pokrovskii and Khalatnikov1 for find
ing the amplitude for reflection at a barrier. The 
method enables one to determine the energy gaps 

with a relative accuracy 1/kL. We choose as our 
two linearly independent solutions of the Schrod
inger equation two complex conjugate functions. 
When they are displaced by an amount equal to the 
period, these functions are transformed as follows: 

f (x + L) = Df (x) + Rf* (x), 

f* (x + L) = D*f (x) + R*f (x), (3) 
where R, D are certain constants. 

From the condition of constancy of the Wron
skian for f and f*, we have 

Forming the general solution 1/J (x) from the func
tions (3), and writing the condition 1/J (x + L) 
= A.I/J ( x), we get the dispersion equation in the 
usual way. It has the form 

(5) 

So far we have not used the quasiclassical ap
proximation. We now use it for calculating the 
quantity D. For this purpose we consider the be
havior of the functions f ( x) and f* ( x) in the com
plex x plane. [U (x) is assumed to be an analytic 
function on the real axis.] Let us assume that the 
quantity E - U ( x) has simple zeros in the upper 
half plane at the points xn = x0 + nL (where n is 
integral). We consider the behavior of the solu
tions f ( x) and f* ( x) on the line ( l) along which 

X 

Im J p dx = 0 and the line conjugate to it in the 
xo 

lower half plane. The approximate appearance of 
these curves is shown in the figure. At the points 
Xn these curves make an angle equal to 27T/3. 

As the function f (x) we choose a solution 
which behaves like p -1/2 exp [ i ( T- To)] on the 

X 

segment l 1 (T = J pdx, T(x0 ) = T0 ). Since the 

point x0 is the "turning point," to find the solution 
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in the region 12 we must join the quasiclassical 
solution with the solution of the Airy equation. 
Using the well-known formulas for joining at the 
turning point (cf., for example, reference 2), we 
find the solution over the region 12 in the form 

f (x + L) = p-'f, {exp [i (T (x + L)- To)l 

-i exp [-i(T(x+L)-T0)]}. 

This expression can be written as 

f (x + L) = p-'1. {/"' exp[i (T (x)- To)l 

-ie-i" exp [- i (-r (x)- To)]}, 
L 

(6) 

q; = ~ p dx. (7) 

On the level line hn ( T- To) = 0 both exponents 
in (7) are of the same order, so that this form is 
correct. Furthermore we note that the function 
f*(x) on the curve 1* behaves like p-1/ 2 x 
exp [- i ( T- rti) ]. In extending it from the line 1* 
to 1 it increases. Therefore on the line 1 the func
tion f* ( x ) will behave like 

f*(x) = p-'1'{exp [-i(T-'t~)l +A exp [i('t-'to)]}. (8) 

The coefficient A in the decreasing exponential re
mains undetermined in this continuation, but the co
efficient in the increasing exponential is not changed. 

Comparing (7) and (8) we can find the coefficient 
R which enters in (3). It is equal to 

R = i exp [i (To- -r~)l (1 + 0 (1 lkL)). (9) 

The modulus of the quantity D is determined from 
(4) and (8). As we see from (7), 

arg D = cp (1 -;- 0 (1 I kL)). (10) 

The forbidden energy bands are determined 
from the condition of reality of A. in equations (5). 
Thus we have 

(11) 

For the center of the n-th energy gap En, we find 
from (11) and (7) the well-known expression 

L 

~ } 1 2m(En- U)dx = nn(1 + 0 (1 / kL)). 
0 

For the width of the gap we get 

~n =r?_exp[i r lr2m(E-V)dx1(I-:-0(1/kL)). (12) 
n • 

xt 

Here Tn is the time of passage of a classical par
ticle with energy En through one period of the 
potential. 

As we see from (12), the widths of the energy 
gaps are actually exponentially small. As for the 

(" 

positions of the energy gaps, they are determined 
only to within the accuracy of a power. 

The expressions obtained above correspond to 
the case 

U maxkL / E ';> 1, ( 1 - U max I E) kL ~ 1. (13) 

In similar fashion we can also treat other cases 

umax kL~ 1 
E "-' 

In the first of these cases the zeros of the func
tion p2 ( x) are located near the poles of the function 
U ( x). Then for the determination of the quantities 
R, D one must use the hypergeometric equation in 
place of the Airy equation. 

In the second case, the zeros x0 and xri of the 
function p2(x) are close to one another. Then for 
the joining of the quasiclassical wave functions one 
must use parabolic cylinder functions. However, 
as it is easy to show, the value arg D in both cases 
can be taken from equation (10), while the value of 
R formally coincides with the amplitude for reflec
tion of the particle from the potential field, vanish
ing as x - ± oo • 

Using the results of references 3 and 4, where 
the calculation of R was done respectively for the 
first and second cases, we obtain the following ex
pressions for the widths of the energy gaps. In the 
first case x, 

~n ~= }: IF (f.Ln) \ exp [i ~ l~"2m [E- U) dx], 
I! • 

(1 - U n~ax J kL ~ 1. (14) 

Here !J.n = ,.J 2m/En U0, U0 is the residue of the 
function U ( x) at the pole which is nearest to the 
zero of xo, 

F ( ) = 2n exp [i!J- ln (i!J- I 2e)] 
f.L r (i!J-; 2) 1'(1 + i!J- !2) · (15) 

In the second case we have 

" ~I! =i-;;[2ch(2i -~· l1 2m(E-U)dx)r ', 
u 
~ax kL';> 1. 

(16) xJ 

It is not difficult to see that formula (12) is ob
tained from (14) and (16) for the case when both 
inequalities (13) are satisfied. 
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In all the cases treated, the energy spectrum 
near the edges of the zones differs markedly from 
(2). Relatively simple computations lead to the rule 

Ll'ik11 ~ I , (1 7) 

where vn is the velocity of a classical particle 
with energy En; .6.kn = k- 1rn/L; and the quantity 
.6.n is taken from (12), (14), or (16). 

The author is grateful to V. L. Pokrovskii for 
valuable comments. 
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