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The wave function for a system consisting of a nucleus and a particle is derived under the 
assumption that it is constant on the surface of a nonaxial nucleus. The relative probabilities 
for a decay to the levels of the ground and "anomalous" rotational bands of the daughter nu­
cleus are also determined. The results are compared with the experiments. 

THE effect of nonsphericity of nuclei on the rela­
tive probabilities of a decay of even-even nuclei 
to the rotational levels of the daughter nucleus has 
been considered in several papers, i-s where it has 
been assumed, however, that the nucleus is axially 
symmetrical. In view of the success of the theory 
of nonaxial nuclei, proposed by Davydov and Filip­
pov6 and developed in many subsequent papers, it 
is interesting to consider the effect of nonaxiality 
on the a decay, a topic to which the present paper 
is devoted. We use the analytic solution method 
proposed by Nosov. 2 

We consider a system consisting of an a par­
ticle in the electric field of the daughter nucleus. 
The nucleus is assumed nonaxial with unchanging 
internal state, i.e., the rotation is considered adia­
batic with respect to the {3 and y oscillations of 
the surface and the single-particle motions inside 
the nucleus. Outside the effective range of the nu­
clear forces, the system satisfies the equation 

[ 
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-2 ~+ 2 .-::.JAJ~+V(r,Ot)-E '¥=0, 
fL V=l 

Av=[4B~2 sin2 (y-2nvj3)r1 , (1) 
... 

where JJ. is the reduced mass of the system, J the 
momentum operator of the daughter nucleus, Av 
the reciprocals of the nuclear moments of inertia, 
1 the momentum operator of the a particle, 
V ( r, Bi ) the potential energy of the electrostatic 
interaction between the nucleus and the a particle, 
and E to the total energy of a decay to the ground 
state. 

In the case of even-even nuclei, the total mo­
mentum of the system, equal to the spin of the par­
ent nucleus, is zero. The solution should therefore 
satisfy the condition 

(2) 

We seek the solution >IF of Eq. (1) in the form of 
a superposition of particular solutions 1/Jzro repre­
senting at infinity the daughter nucleus in some ro­
tational state <I>~MT( ei ), and an a particle with 
momentum l removed from this nucleus. The ex­
pansion coefficients are determined from the values 
of the wave function on the surface of the nucleus. 

The rotational wave functions of the nucleus 

r (2J + 1)'/, "V -'/, J 
<PJM-,= 16Jt2 ..::..JaK(I+f>Ko) [DMK(8t) 

K 

+ (- l)J D~.-K (8t)l 

( K » 0 and even only) satisfy the equation 
3 

liZ "V A J' 2n-.r Er rhr -2 ..::.J v v'<'JM-, = h'<'JM-,; (3) 
'11=1 

the quantities aK(J, T; y) and E~ T are given in 
the papers by Davydov and co-workers. 6• 7 From 
the vanishing of the total momentum of the system 
it follows that J = l and as r - oo the angular part 
of the sought particular solution has the form 

<Ph=~(!, l, m,-m[O, 0) Ytm('fr, cp) <P~.-m,.,(Ot)· 
m 

We change to a coordinate system r, J.', cp', 
which rotates with the nucleus. In this system 
<l>ZT assumes the form 

' ') 1 "V (I I " )-'/, [Y (·'" ') 'Pt.,('fr ,(jl = 4Jt LJ aK TVKo IK u ,(jl 

K>o 

(4) 

and the potential energy is independent of the Euler 
angles, which characterize the orientation of the 
nucleus in the space V = V ( r, J.', cp' ) . For the 
case of nonspherical nuclei with radius 

oc 

R = R0 [1 + ~ ~UnmYnm (-&', cp') ]-- Ro (I + £) 
n=2 m 
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the latter can be expanded in powers of the nuclear 
deformations anm. Accurate to linear terms of the 
expansion, we have in the region outside the nucleus 

V (r {}' m') = 2Ze2 [1 + ~ 3ctnm (Ro)" Y ({}' m')] 
' ' 't r .L.i 2n + 1 r nm ' 't • 

n, m 

We seek a particular solution lf!ZT in the form 

\)J1, = <1> 1" exp [a (r, {}', qJ'; l,T)]; (5) 

here a is bounded by the condition that as r - co 

it contain only the diverging wave and be independ­
ent of the angle variables J.' and cp'. Substituting 
(5) in (1) and taking (2), (3), and (4) into account, we 
obtain an equation for a: 

[ (~Y + ~:~ + ~ ~] <l>t, + ~ [ E- E/,- f.Z/2~; 1 ) - v J 
3 

- ~ (~ + ~tAv) {[(fvc:;)2 + (Z~a)] <l>t, 
V=l 

(6) 

To solve this equation we use the method, pro­
posed by Nosov,2 of expanding a in a double series 
in powers of ti ( quasiclassical approximation, 
lower index) and in powers of the nuclear defor­
mation ~ (upper index): 

(j = (j~~ + (j~1 + (j~O) + .. • (7) 

Substituting (7) in (6) and collecting terms of 
equal orders in ti and ~, we obtain a system of 
equations for a~q>: 

[a~(o> Jz 3 1 
~ - \,l (- 1 nA) [l 0(~)] 2 
dr LJ , 2 1 1 v v 1 

\1=1 

(6a) 

{ac;6°> ac;<~i 1 a•cr<~i 1 acr<~i} 3 1 
Tr Tr + 2 Tr2 + rTr <l>t,- ~ (,.-- + ~Av) 

'J=l 

{ 
A (0) A (0) 1 A 2 (0) ' A A (0) } 

X <l>t, [/vo +d [lvOo ] + 2 <l>t,lv Cl -1 I (lv<l>t,) !lvo -d =0. 

This system is solved by successive approxi­
mations. If we confine ourselves to the first three 
terms of the expansion of a in the double series 
(7), a= a~0{ + a~i( + a~0 >, then the solution has the 
form 

r oo 
. (' . 6fLZe2 ~ ctnm \' 'Ro)n+1 dr 

o = t J kh (r) dr + t h'Ro _4l 2n + 1 Y nm j (_--, k1, (r) 
'l't n,m , 

-In [r Y k1, (r)], 

k (r) = V2~-t [E _ E' _ h21 (I+ 1) _ 2Ze2 ]'/, 
1-r h - l-r 2~-trz r , (8) 

where rlT is the turning point, determined from 
the condition kzT( rzT) = o. 

As already noted, the complete solution of Eq. 
(1) is sought in the form of a superposition of par­
ticular solutions lf!ZT: 

"¥ = ~bt,'Pt-r' 
l," 

The expansion coefficients blT are expressed in 
terms of the values of the wave function on the sur­
face of the nucleus, >lfs, which is assumed known. 
We first write down the expression for the particu­
lar solution on the surface of the nucleus S, equal 
to <.PzTexp{a[R(J.', cp'), J', cp'; l, TJ}. Since we 
have considered in the solution of the system (6a) 
only the terms linear in ~, and since ti2l(l + 1 )/2~-tr2 

« E and Ef, T « E when l is small, we can expand 
(S),at r=R(J',cp'), inpowersof ~. l(l+l), and 
Ef, T and confine ourselves to the linear terms of 
the expansion. Then, introducing the notation* 

k2 = 2p.E I fi2 , x~ = 4p.Ze2 I fi2Ro, 

r" = E-1 !xRo + (x~Ro I k)arctg (xI k) l. 
00 

'X({}' m') = ]._ x,2 ~ ctnm Rn+ly ({}' ')(' . dr 
' 't 2 b .L.i 2n + 1 ° nm ' ((! j n+ 1 V 2 

n, m R., r . xbRo! r-k2 

and taking (5) into account, we obtain, apart from a 
constant factor independent of l or T, 

')J1,I5 = <l>t, exp [+r,} (l + 1) ++r"E/,- xR0~ +x]. 

We now readily obtain the expansion coefficients 

b~-r = Ct-r exp [ -+rrJ (/ + 1)- ~ 'l'nEt-<], 

where we put 

Ct" = ~ lfs<I>;, exp (xRo~- X) d8i sin{}' d{}' dqJ'. (9) 

Let us calculate the flux through a sphere of in­
finite radius. Substituting lf!ZT into the expression 
for the flux density and integrating over the angles 
ei, J', and <p' we find that at large r the flux 
through this sphere is the same for all l and T. 

The relative probability of emission of an a par­
ticle with momentum l and excitation of the daugh­
ter nucleus in the state l, T is thus proportional to 
lbzrl2• i.e., 

Wt-< = exp [-y,.l (/ + 1)- 'l'nEl-<]lct-<12 • 

Let us examine the result obtained under two 
additional assumptions: 1) the wave function is 

*arctg = tan-'. 
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FIG. 1. Dependence of \c2't/c0 \ 2 on the nonaxiality parame­
ter y. Solid curves-for 't = 1; dotted curves- for 't = 2. The 
numbers on the curves indicate the value of the parameter 
{3y5/4rr for x R.,(1-k2/2xt) = 16.2. 

constant on the surface of the nucleus, "Ws = const; 
2) the nucleus has only quadrupole deformation 
(in the frame fixed to the nucleus ) : 

U21 = U2,-1 = 0, Unm = 0 for n =/= 2. 

Then 
{ Yzz+Y2,_2 • ) 

~ = ~ \ Y 20 cos r + rz sm r . 

1 x (x~ + 2k2) + 2ika 
% =5~Ro 2 

xb 

Let us substitute in (9) the resultant expressions 
for ~ and x, formula (4) for .PzT' "Ws = const, and 
integrate over the angle variables. Accurate to a 
constant factor (independent of l and T and there­
fore of no effect on the calculation of the relative 
probabilities ) we obtain 

c1, = ~ aK (1 + {JKo)-'/, ftK' 
K 

where K 9 0 and even only, and 

f1K = +'~ [YtK + (- 1)1 Yt,-K]exp {[ ~ x ( 1- 2:~ )- i 

x R0~ [cos rY zo + s~; (Y 22 + Y 2 __ 2) l} dQ. 
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FIG. 2. Dependence of y\c22/c0 \ 2 on the nonaxiality param­
eter y. The numbers on the curves have the same meaning as 
in Fig. 1. 

For odd l, all the fzK vanish, i.e., under the 
foregoing assumptions the a decay to levels with 
odd l is forbidden, in agreement with the experi­
mental data. For even l, the integrals fzK were 
evaluated numerically [with KRo ( 1- k2/2Kt) = 16.2], 
and the coefficients aK ( l, T; y) were taken from 
Davydov et al. 6•7 The values of I clT/c0 12 as func­
tions of {3 and y were obtained for l = 2, 4, 6 and 
T = 1, 2. It was found that Re CZT » hn czT. For 
l = 2 the results are shown on the curves; it is 
more convenient to plot for the anomalous rota­
tional band ( T = 2) the quantities -./ I c22 I c0 12 , 

using in front of the square root the same sign as 
for Re (c22 /c0 ). 

The table lists the theoretical values of the 
relative a-decay probabilities, calculated for 
several nuclei, and the corresponding experimen­
tal values. The probability of decay to the ground 
level is assumed to be unity. The radius of the 
nucleus is calculated from the formula R0 = 1.2 
x 10-13 A113 em. The nonaxiality parameter y is 
determined from the energy ratio E22 /E21 of the 
first two levels with spin 2 + (from E41 /E21 for 
Ra 224, Ra 226, and u234 ) • Where no experimental 
values were known for the E41 and E61 levels, the 
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Relative probabilities of a decay to rotational levels 
of even -even nuclei 

lw,.jw,,% VI(l W22iW0 , o/e UJ4.1/Wo• % W11/W1,% 
Daughter y, 
nucleus deg 

exp. 4Tt 
theor. 

I 

Rn218 30 4.4 0.36 0.04 
Rn22o 26 5.0 0.27 0.014 
Rn222 25 6.1 0.32 0.006 
Ra224 22 39.5 0.31 
Ra226 20 31.6 0.24 
Th228 10 47.1 0.24 2·10-7 

Th23o 9 39 0.20 4-1o-s 
u•s2 9 44.8 0.20 3-10-6 

u2s• 13 38.8 0.18 
Pu23s 8 35.7 0.16 1-10-6 
Pu2•o 8 30.3 0.15 1·10-6 
Cf2ao 8 20 0.11 1·10-5 

theoretical level positions determined from y and 
E21 were used ;6• 7 the probabilities of decay to these 
levels are designated by an asterisk. The nuclear 
deformation (3 was determined from the condition 
that the theoretical and experimental values of the 
a-decay probability be equal at the lower level 
with spin 2+: 

(10) 

We note that the ratio E22 /E21 does not deter­
mine y uniquely, for the same result is obtained 
under the transformation y- 60°- y. The course 
of the curve I c21 I c0 12 makes it possible to re­
solve this ambiguity. It is found that y ranges 
from 0 to 30° for all the a-radioactive nuclei consid­
ered here. This follows from the fact that when 
30° < y :s 60° the fulfillment of condition (10) ne­
cessitates impossibly high values of the deforma­
tion (3. 

For the main rotational band ( T = 1 ) the curves 
of I cztfc0 12 differ little in form. The curves of 
I c41/co 12 and I c6tfc0 12 fall off somewhat more 
rapidly than I c2tfc0 12 with increasing y (for 
fixed (3), but at the same time they increase more 
rapidly with increasing (3 (for fixed y). This 
causes the theoretical probabilities of a decay 
to the levels of the main rotational band to depend 
little on the nonaxiality of the nucleus y if (3 is 
determined from condition (10), and to make these 
values close to the probabilities obtained by Nosov2 

under the assumption of axial symmetry for the 
nucleus ( y- 0); for nonaxial nuclei, the deforma­
tions (3 must be assumed to be somewhat larger 
than for axial ones. 

The theory of nonaxial nuclei makes it possible 
to calculate the probabilities of decay to the levels 
of the "anomalous" rotational band ( T = 2 ), par­
ticularly to the second level with spin 2+. These 
probabilities are found to be strongly dependent 

I I exp. I exp .. 

Refer-

the or. the or. ence exp. 

0.01 0,003 0,002 5-10-8* - [8] 
o:o1 0.003* - 5 ·10-8* - [ 8] 
0.013 0.003* - 4 -10-8* - [8] 
- 0.43 0.3 4-10-4 weak !"I - 0.24 0.26 1·10-· 10-• P·•J 
- o:67 0.47 6·10-4* - l "I 
- 0.42 0.4 3 -10-'* - ["] 
- 0.70 0.26 0.001 o.oo:l ["] 
- 0.53 0.13 0.001 o:ooo ["] 

5 ·10-6 0:48 0.05 7 -10-• 0.008 [•] 
- 0.35 0.02 4 ·10-4 0.005 (9.10] 
- 0.18 0,3 3 ·10-4* - (9.11] 

on the nonaxiality of the nucleus y. As can be 
seen from the table, agreement with experiment 
is found to be good for nuclei for which experi­
mental data are available on the probabilities of 
a decay to the second level with spin 2 +. 

In conclusion, I consider it my duty to thank 
Prof. A. S. Davydov for formulating the problem 
and for valuable remarks. 
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