
SOVIET PHYSICS JETP VOLUME 13, NUMBER 5 NOVEMBER, 1961 

DISPERSION EQUATION FOR AN ORDINARY WAVE MOVING IN A PLASMA 

PERPENDICULAR TOAN EXTERNAL MAGNETIC FIELD 

Yu. N. DNESTROVSKII and D.P. KOSTOMAROV 

Moscow State University 

Submitted to JETP editor December 3, 1960 

J. Exptl. Theoret. Phys. (U.S.S.R.) 40, 1404-1410 (May, 1961) 

A general qualitative investigation is carried out on the dispersion equation for an ordinary 
wave moving in a plasma perpendicular to an external magnetic field. The regularities found 
are illustrated by some results of a numerical solution of the dispersion equation. 

INTRODUCTION 

IT is known that two types of waves can exist in 
a homogeneous, unbounded plasma located in a 
homogeneous external magnetic field H0• The 
direction of propagation of these waves is perpen
dicular to the field H0• The first of these types is 
a purely transverse wave with an electric vector 
polarized along the field H0 (ordinary wave), and 
the second consists of waves in which the electric 
vector is polarized perpendicular to H0 ( extraor
dinary and plasma waves ) . The frequency w and 
the propagation constant k of these waves are re
lated by the dispersion equations, which are ob
tained with the aid of Maxwell's equations and a 
linearized kinetic equation for the electrons (with
out consideration of collisions ) . Depending on the 
character of the problem of the dispersion equation 
considered, one can determine the propagation con
stant as a function of the frequency or, conversely, 
the frequency as a function of the propagation 
constant. 

In the present work, we shall be interested in 
the dispersion equation for the ordinary wave: 1- 6 

w2 w~w 
D (k w) = k2 - - + ;:-;;--.,..-=;.-.,------c 

' c2 2c2wH sin (nw I wH) 

2T< 

~ {, Tk2 L w 
X exp --. (I- COS T)J COS -(T-rt) dT = 0. (1) 

o mw~ wH 

Here WH = eH0;mc is the Larmor frequency, w0 

= ../ 47rNe2/m is the plasma frequency, T is the 
temperature of the electrons in energy units. By 
means of transformations similar to those used 
by Gross,1 Eq. (1) can be written in the form 

w2 w&w ~ bn (Tk2 I mwj,/) 
D (k w) = k2 - -c-- + -. - L.i = 0, 

, c' c'w H n=-oo w I w H - n 
(1 ') 

where tn(x) =e-x In(x), In(x) is the Bessel func-

tion of imaginary argument. In some cases, the 
second form of writing is the more convenient. 

Equation (1) was studied in a number of re
searches. 2- 4•6 The characteristic feature of the 
methods of investigation employed has been the 
preliminary expansion of the equation in some 
small parameter; usually, it is assumed that 
Tk2/mwir « 1. However, the behavior of the roots 
of Eq. (1) and of the simplified equations have a 
number of essential differences. Equation (1) 
loses meaning for w = nwH. In this case, the mo
tion of the electrons over the Larmor curves falls 
into resonance with the vibrations in the field of 
the wave. The simplified equations, in the first 
place, do not take into account resonances of higher 
orders, and in the second place lead to formulas 
which are inapplicable even in the vicinity of the 
first resonance, since k2 increases without limit 
in this region. Finally, because of the non-uni
formity of the expansion in the small parameter, 
it is not possible to study the problem of the total 
number of roots and their distribution over the 
complex plane. Therefore, analysis of Eq. (1) in 
the works mentioned is incomplete, and is clearly 
incorrect in a number of cases. We have, there
fore, set up the problem in the present work of 
giving a sufficiently detailed and mathematically 
rigorous study of the dispersion equation (1). At 
the same time we shall give the results of a nu
merical solution of Eq. (1) which illustrates the 
regularities that have been established. 

1. PRELIMINARY INVESTIGATION OF THE DIS
PERSION EQUATION 

We shall begin our investigation of the disper
sion equation (1) with a case in which it is required 
to find the propagation constant for a given fre
quency. We introduce the dimensionless variables: 
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s = k2c2 I w2 = N 2, a= w I WH, 

~ = Wo / WH, y = T I mc2 , 

( N2 is the square of the index of refraction). Then 
we have, in place of (1) and (1'), 

'![) (s, a, ~. r) = s- I 
2r. 

B' \ + 2as.inc:ot,\ exp{-S:X2y(l-cos-r)}cosa(T-:rt)d-r=fl, 
0 (2) 

~' ~ro ~n (sa'r) :V(s, a,~. r) = s-1 +- -- = 0. (2') a a-n 
n=-co 

We shall seek the roots of Eq. (2) s = s (a, {3, y) 
for all possible positive values of a ( a ;;< n). Real 
roots are considered in Sees. 2 and 3, and complex 
roots in Sec. 4. Every positive root s of Eq. (2) 
determines a pair of real roots of Eq. (1), k = 
± ..fS w/ c, and every negative root determines a 
pair of purely imaginary roots k = ± i -r::s w/ c; 
finally, every complex root of Eq. (2), together 
with its corresponding complex conjugate root, de
termines four complex roots of Eq. (1) which can 
be written in the form k = p ± iq, k = -p ± iq. 

A comparison of the signs of the functions 
:i5 (s, a, {3, y) at s = 0 and s = ± oo plays an im
portant role in the investigation of the real roots 
of Eq. (2). By direct calculation, we find that 

:i5 (0, a, ~. r) = ~2 1 a2 - 1 . 

On the other hand, the behavior of the function :i5 
as I s I - 00 is characterized by the following 
asymptotic formula: 

(3) 

'!f) (s, (X, ~. y) = s + V nl8 ~2e-2'"'Y I a sin an V sa2 y. (4) 

Thus 

lim :IJ (s, a,~. y) = + oo, (:5) 
s-++oo 
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FIG. 1. Frequency dependence of the index of refraction 
for {3 = yO.S and for various values of y. 

sonable to consider only small values of the pa- · 
rameter y. We compare Eq. (2) with the degen
erate equation which is obtained from (2) for 
y=O (T=O): 

:IJ (s, a, ~. 0) = s- I + ~ 2 1 a 2 = 0. (8) 

According to this equation, there exist traveling 
waves in the plasma at zero temperature for a > {3 
( w > w0 ) ; for a < {3 ( w < w0 ) , propagation of an 
ordinary wave is impossible (in the first case, 
the root of Eq. (8) is positive, in the second, it is 
negative). This conclusion does not carry over 
completely to Eq. (2); however, a number of pecu
liarities of the solutions of this equation also de
pend significantly on the relation between a and {3. 
Therefore, proceeding to the investigation of Eq. 
(2), we consider separately the cases a > {3 and 
a< {3. 

2. INVESTIGATION OF THE REAL ROOTS OF 
lim :IJ (s, a, ~. y) = + oo sign (sin a:rt). 

S-+-00 
(6) EQUATION (2) FOR 01 > {3 ( w > w0 ) 

In the study of the behavior of the roots in the vi
cinity of cyclotron resonances, it is convenient to 
make use of the equation in the form (2'). It should 
be noted that only two terms of the series play an 
important role for small y and a "" n: the zero 
term and the n-th term. The first of these is the 
only nonvanishing term of the series for sy - 0, 
the second approaches infinity for a-n. There
fore, one can make use of a simplified equation of 
the form 

~n (sn 2y) = (a-n) n~-2 [I - s- ~2n-2~0 (sn2y)) (7) 

for the qualitative investigation of the behavior of 
the roots a "" n. 

Equation (1) is obtained by means of the non
relativistic kinetic equation; therefore, it is rea-

In the region of change of the parameter a 
under consideration, we have 

:IJ (0, a, ~. r) < 0. (9) 

Taking into account (5) and (9), we find that Eq. (2) 
necessarily has a positive root for a > (3. As y 
- 0, this root approaches the solution of Eq. (8). 
We therefore compare the signs of the function :i5 
for s =- oo [Eq. (6)] and s = 0 [the inequality 
(9)]. If sin wr > 0, then the signs are opposite. 
For such a, Eq. (2) also has a negative root which 
approaches - oo as y- 0. If now sin a7r < 0, then 
the signs of the function :i5 are identical for s 
= - oo and s = 0. In this case, Eq. (2) has no nega
tive roots for sufficiently small values of y. By 
considering the equation in the form (2'), we can 
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FIG. 2. Frequency dependence of the index of refraction 
for {3 = ,;5 and for various values of y. 

investigate the behavior of the roots in the vicinity 
of the resonances a "' n. As a-n- 0, the nega
tive root approaches + oo; as a-n+ 0, it ap
proaches zero. The negative root approaches zero 
as a-n. 

Results of a numerical solution of Eq. (2) are 
shown in Figs. 1 and 2. The index of refraction 
N = ..fS is plotted along the positive ordinate, 
corresponding to the positive root; the quantity 
iN = ~, corresponding to the negative root, is 
plotted along the negative ordinate. We see that 
the positive root is almost everywhere close to 
the root of the degenerate equation (8) for a > {3. 

The drawings give a graphic picture of the be
havior of the roots in the vicinity of the resonance 
points. Finally, the peculiarities of the dependence 
of the roots on the parameter y are very well seen 
from the drawings. 

3. INVESTIGATION OF THE REAL ROOTS OF 
EQUATION (2) FOR a< {3 ( w < w0 ) 

By comparing the signs of the expressions 
fJJ (±oo, a, {3, y) and flJ (0, a, {3, y) for a< {3, we 
arrive at the following conclusions: 

1. If sin a1r > 0, then Eq. (2) has an even num
ber of positive and negative roots. 

2. If sin a1r < 0, then Eq. (2) has an even num
ber of positive and an odd number of negative roots. 

Comparison of Eq. (2) with Eq. (8) shows that 
Eq. (2) generally does not have positive roots for 
small values of y, and for frequencies far from 
the resonance. So far as the negative roots are 
concerned, such a root will be unique if sin a1r < 0. 
As y- 0, this root approaches the solution of Eq. 
(8). In the case in which sin a1r > 0, Eq. (2) has 
two negative roots; as y- 0, one of these ap-

proaches the solution of Eq. (8), the other ap
proaches - oo . 

By considering the equation in the form (2'), we 
can investigate the behavior of the roots in the vi
cinity of the resonances. The picture in the given 
case is seen to be more complicated than for a 
> {3. It is most important to note the following. 

1. In the vicinity of each resonance a "' n, 
there is a region O!n ( {3, y) < a < n in which Eq. (2) 
has two positive roots. As a-n- 0, one of 
these approaches 0, and the other approaches + oo. 

2. In the vicinity of each resonance a "' n, there 
is a region in which Eq. (2) no longer has real roots. 
For resonances of odd order, this region is located 
to the left of the point a= n: O!n(f3, y) <a< Cin(f3, y); 
for resonances of even order, it is located to the 
right of the point a= n: n < a< 'an(f3, y). 

We shall not describe the remaining peculiari
ties of behavior of roots in the vicinity of the cy
clotron resonances in any detail; the general pic
ture can be seen from Fig. 2. We only note that 
the number of real roots of Eq. (2) in the region 
a > {3 does not exceed 2, and in the region a< {3, 
it does not exceed 3. 

4. COMPLEX ROOTS OF EQUATION (2) 

In the investigation of complex roots of Eq. (2), 
we make use in principle of an argument which 
goes as follows; if the function F ( s ) is analytic 
everywhere in the region G except for a finite 
number of singular points of the type of poles, 
and does not vanish on the boundary of the region 
r, then the change of arg F ( s ) in passing about 
the contour in a positive direction, divided by 211", 
is equal to the difference between the number of 
zeros and poles of the function F ( s ) in the region 
G: 

1 
N- P = 2n var (arg F(s)) (10) 

(each zero and pole is considered as many times 
as its multiplicity). 

The function fJJ (s, a, {3, y) has no finite singu
larities in the plane of the complex variable s; 
therefore, for it there will only be the number of 
zeros on the left side of Eq. (10). 

Let us consider a circle of sufficiently large 
radius R in the complex plane of the variable s; 
the center of the circle is at the origin of the co
ordinates. If Eq. (2) has roots on the bounding 
circle, then one can either go around these roots 
by means of a local deformation of the curve, or 
decrease the radius R slightly. For the calcula
tion of the change of arg fJJ along the boundary of 
the region, we make use of the asymptotic formula 
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(4) for the function ~ as I s I - oo , which is valid 
for both real and complex values of s in the inter
val - 37T/2 < arg s < 37T/2. It is evident from this 
formula that, in crossing the right semicircle, 
arg 'JJ changes by a quantity of the order of 7T, and 
in crossing the semicircle on the left, by a quantity 
of the order of 4a2yR. The total variation of arg 'JJ 
on the contour would be a quantity of the order of 
4a2yR which increases without limit as R - oo • 

This means that Eq. (2) has an infinite ( denumer
able ) set of roots. 

Since the number of real roots is finite (not 
larger than 3 ) , the number of complex roots must 
be infinitely great. It is evident from the asym
ptotic formula (4) that for s -+ oo the roots are group
ed beside the imaginary axis in the second and third 
quadrants. If the parameters a and B are fixed, 
while y approches 0, then all complex roots will 
tend to infinity. 

5. DETERMINATION OF THE FREQUENCY AS 
A FUNCTION OF THE PROPAGATION 
CONSTANT FROM THE DISPERSION EQUA
TION (1) 

We now consider Eq. (1) from another point of 
view, in which it is required to find the frequency 
w = w ( k) from this equation for a given real 
propagation constant k. Such a problem can 
easily be investigated with the help of the results 
obtained above. 

To find the real roots of Eq. (1), it is necessary 
to find in the plane a, N the points of intersection 
of the line N = kc/ wHa (the dashed curve in the 
drawings ) with the curve of the function N 
= ../ s (a, {3, y) . To each such point a*, N* there 
corresponds a pair of roots of Eq. (1): w = ±wHa*. 
The analysis carried out in Sees. 2 and 3 shows 
that the number of points of intersection will be 
infinitely large. If we enumerate the abcissas of 
these points in increasing order 1( a 1 < a 2 < a 3 

< ... ), then their distribution along the a axis 
will possess the following features (see Figs. 1 
and 2): 

1. The values of an lie within the limits n- 1 
< an< n (n = 1, 2, 3, ... ). 

2. One of the abcissas an0 is close to the ab
cissa of the point of intersection of the lines 

N=kc/wHa H N = Vl-~2 /a2 , i.e. an, 

=V~2 +(kclwH)2 • 

3. For 1 :::; n < n0, the quantity an ~ n. 
4. For n0 < n < oo, the value of an ~ n- 1. 
Thus to each real value of k there corresponds 

an infinite number of real roots of Eq. (1): ± w ( k) 

= ± wHan, and Wn ~ "w~ + k2c2 , and Wn ~ nwH 
for 1 :::; n < n0; wn ~ ( n- 1) wH for n0 < n < oo • 

We shall now show that Eq. (1) does not possess 
any complex roots w = w (k). For this purpose, we 
consider circles Cm of radius Rm = WH ( m + %) 
in the plane of the complex variable w; here m is 
a sufficiently large integer. On circles of such a 
type we have 

where A is some constant independent of the num
ber m. Consequently, for sufficiently large values 
of m, 

On the other hand, inside the circle Cm, the 
function D ( k, w ) has 2m + 2 real roots and 2m 
poles of first order at the points w = ±nwH (n = 1, 
2, ... , m ). Since, in accord with (10), the total 
number of zeros of the function D inside the circle 
Cm must be equal to 2m+ 2, this means that the 
complex roots w = w (k) are absent from Eq. (1). 

CONCLUSIONS 

The investigation that has been carried out 
makes it possible to draw the following conclu
sions on the peculiarities of the solutions of the 
dispersion equation (1): 

1. For w > w0, w ¢ wHn Eq. (1) always has a 
pair of real roots ± k ( w ) . 

2. For all w < w0, regions exist in the neighbor
hood of the resonance frequencies w "' nwH in 
which Eq. (1) has two pairs of real roots. Outside 
these regions Eq. (1) has no real roots for w < w0• 

3. For w < w0, regions exist in the vicinity of 
the resonance frequencies in which Eq. (1) has 
neither real nor purely imaginary roots [the real 
roots are lacking in Eq. (2)]. 

4. For each value w ¢ nwH, Eq. (1) has an infi
nite set of quartets of complex roots: 

k = P, (ro) ± iqn (w), k =- Pn ± iqn. 

5. For any real value of k, Eq. (1) has an infi
nite set of pairs of real roots ± wn ( k). It has no 
complex roots w = w ( k). 

The authors express their gratitude to A. A. 
Chechina for her help in carrying out the calcula
tions. 
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