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The methods of the theory of superconductivity are used to find the mass of a particle in re­
normalizable theories with vanishing bare mass and involving a weak coupling constant. Only 
the zero solution for the mass is possible in electrodynamics and in the one-dimensional 
Thirring model; for the one-dimensional model of two interacting fields a nonvanishing so­
lution is obtained. A finite expression for the charge has been obtained for this model. 

1. INTRODUCTION 

IT has been proposed by Nambu1 and the authors2-
that the mass of particles has the same origin as 
the gap in the energy spectrum of the excitations 
in a superconductor. The mass is not introduced 
into the original Lagrangian but arises as a result 
of "pairing" of particles, which leads to a rear­
rangement of the vacuum state. As in the theory 
of superconductivity the mass is equal to zero in 
any order of perturbation theory but appears in 
the exact solution. However, the four-fermion in­
teraction considered in the above-mentioned papers 
leads to strong divergences, which makes quantita­
tive discussion impossible. It is therefore of inter­
est to verify the indicated conjectures on the ex­
ample of renormalizable theories, where the cal­
culations are possible for small coupling constants. 

It turns out that in electrodynamics and in the 
one-dimensional Thirring model3 the resultant 
homogeneous equation for the mass has only the 
zero solution. However in the one-dimensional 
model of two interacting fields proposed by 
Ansel'm4 there exists in addition to the trivial 
zero solution also a nonzero solution for the mass. 
The massless solution turns out to be unstable in 
this case. 

2. ELECTRODYNAMICS AND THE THffiRING 
MODEL 

Abrikosov, Landau, and Khalatnikov5 have con­
sidered the question of the particle mass in elec­
trodynamics in the approximation e1 < 1. If dz(k2) 
= 0 then the electron Green's function has the form 
G (p) = (p- m (p2)) -l. In the case of a vanishing 
bare mass the quantity m (p2) obeys the homoge­
neous equation 

L 

~f mW~ ( 
m (~) = 4n ~ 1 + (ei 1 3n)(L- z) ' 1) 

where ~ = ln (p2/m2 ), L = ln (A2/m2 ), A is the 
cut-off momentum and e1 is the bare charge. 

Equation (1) has only the zero solution. Indeed, 
the general solution of the differential equation 
corresponding to Eq. (1) has the form 

m m = m (L) [1 + (ei/3n) (L- ~)1-'1•. (2) 

Substituting Eq. (2) into Eq. (1) we obtain m ( ~) = 0. 
The same result is obtained in meson theory for a 
coupling constant g~ « 1. 

Let us consider the one-dimensional Thirring 
model. The Lagrangian has the form 

2 (x) = - u+apu- ').. (u+aru) (u+a'u). (3) 

Here u is a two-component spinor, ar = (CT, 1 ), the 
C1 are the Pauli matrices, and ap = azpz -Po· This 
model has an exact solution. 3•6 We shall restrict 
ourselves to the case of small A and will take into 
account only terms of order [A ln ( A2 /p2) ]n, throw­
ing away terms of the form A. [A ln ( A2 /p2) ]n. The 
totality of diagrams with two incident and two out­
going lines will be referred to as the vertex part 
ra{3yo (p1,p2; PaoP4). As was shown by Ansel'm7 

and Ma!er and Shirkov8 in the case when the mo­
menta Pi are of the same order r does not get 
renormalized, but simply equals the zero-order 
expression 4A~ya~0 . 

We shall look for the mass of the particle by 
using the method used in the theory of supercon­
ductivity for finding the energy spectrum. 9 We 
introduce the functions G (x- y) = ( Tu (x) u+(y)) 
and F+(x-y) = (Tu+(x)u+(y)). The Dyson 
equations for G and p+ are of the form 

G (p) = Go (p) [1 + ~u (p) G (p) + ~2o (p) p+ (p)], 

p+ (p) = Go(- p) [~n (p) p+ (p) + ~02 (p) G (p)l. (4) 
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Here 1: 11 ( p ) represents, as usual, the totality of 
compact diagrams with one incident and one out­
going line, 1: 20 and 1: 02 representing similar total­
ities with two incident and two outgoing lines re­
spectively. In our approximation the quantity 
1: ii (p) is equal to zero. 7 The matrix 1: 20 (p) 
= 1:02 (- p) is of the form 

1: ;~ (p) = cr~~il*(p2). 

From Eq. (4) we obtain 

G (p) = - ia' p 1 (p2 + 1 il[2 - i6), 

p+ (p) = - ayM(p2 + 1 ill2 - i6), 

where 

a'p = <rzPz +po, 6- +0. 

In each of the diagrams forming 1: 02 should 
enter an odd number of lines representing F or 
F+; in the asymptotic region p2 » .6.2 it is suffi­
cient to limit oneself to a single line with F+. 
The equation for 1: 02 is shown graphically in the 
figure. It is of the form 

~ o2 ( ) _ I K ( . , ') F.,. ( ') dp' a{l P - ~ a{ly& p,- p, P ,-p yS P (2:t)2 • 

(5) 

(6) 

where Ka{3yo (pi, p2; p3, p4) is a four-pole term 
irreducible with respect to the separation of the 
lines Pi• p2 from p3, p4.i0 The matrix Ka{3yo is 
of the form Ka{3yo = -4iAa~ya#0 K(pi,p2 ; Pa.P4). 
Substituting this expression into Eq. (6) we obtain 

L1 ( ) - \ K ( · ' ') t:,. (p'l dp' (7) P -.) p,- p, P ,- P p'2+ 1 t:,.jz (2n)z • 

Nambui and the authors2 used for K the zeroth 
order approximation K = 1. In this case the fol­
lowing equation is obtained for .6.: 

L1 (1- 4: In 112
12 ) = 0. (8) 

This equation has for arbitrary A the nonzero so­
lution 1.6.1 = A exp (- 27r/A). However in this model 
such an approximation leads to a qualitatively false 
result. In the expression for K one must take into 
account all terms of the order [A In ( A2 /p2 ) ]n. The 
quantity K was found to within this accuracy by 
Ansel'm:7 

K (p,- p; p',- p') = -1- (!.j4:rt) In (N jpi), (9) 

where p~ =max {p2, p' 2}. 

After substitution of Eq. (9) into Eq. (7) and the 
introduction of the logarithmic variables 

p'2 
z = ln--m2 ' 

we obtain the equation 

A2 
L = ln-mz' 

L ~ 

L1 (~) = 4: ~ Ll (z) dz- c:y [<L- ~) ~ L1 (z) dz 
0 0 

L 

+ ~ (L- z) Ll (z) dz l 
~ 

(10) 

Differentiating Eq. (10) with respect to ~ we get . 
il'(~) = (I./ 4:rt)2 ~ Ll (z) dz. (11) 

0 

The solution of Eq. (11) is of the form .6. ( ~ ) = .6.0 x 
cosh (AV4n). After substitution of .6. (~) into Eq. 
(10) we arrive at the following equations for .6.0: 

( I, Az ) do exp - 4n In ~ = 0, (12) 

which has only the zero solution. 
In the model under discussion this result is quite 

natural. In order for a mass to appear it is neces­
sary for two massless particles to form a bound 
state. But in this model there is no physical scat­
tering of two particles -in the exact solution of 
the two-particle problem there is no reflected 
wave, only the phase changes. 3 It is therefore 
natural that in this case the interaction does not 
lead to the formation of a bound state. Formally 
this finds its reflection in the fact that in the 
Thirring model the exact vertex part is mom en­
tum independent, whereas a bound state should 
have a corresponding pole in r. Analogous con­
siderations apply in electrodynamics -in the pho­
ton Green's function dt = [1 + (eif3n)(L-0]-i 
there appears no pole corresponding to a bound 
state. 

3. THE VERTEX PART IN THE ANSEL'M MODEL 

Let us consider the one-dimensional four­
fermion model with two two-component fields u 
and v:4 

~ (x) = - u+ apu- v+apv + A1 (u+aru) 2 + A2 (v+arv) 2 

+"-a (u+aru) (v+a,v) + /,4 (u+crl'-u) (v+al'-v). (13) 

Here the summation over J-1. is of the form aJ-1. x aJ-1. 
= az x az - 1 x 1, the remaining notation being the 
same as in Eq. (3). One could take in the original 
Lagrangian Ai = A2 = A4 = 0, however, this would 
not result in a simplification since terms of this 
form appear in r in subsequent approximations. 

We introduce the two-row "isotopic" matrices 
Ti, T 2, determined by the relations Tiu = u, T2v = v, 
Tiv = T2u = 0. Then the vertex part is of the follow­
ing form: 
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(14) 

We shall solve the problem in the same approxi­
mation as was used above. When the fact that the 
Green's function G is given in the asymptotic re­
gion by its lowest order approximation is taken 
into account, one gets by the methods outlined by 
Ansel'm4 and Dyatlov, Sudakov and Ter-Martiro­
syan10 the following equations* for the O!i: 

L 

<XI m = AI + 8~ ~ a;(z) dz, 
~ 

L 

az (£) = Az + 8~ ~ a; (z) dz, 
~ 

L 

aa m = Aa - ~ ~ aa (z) [aa (z) + <X4 (z) 
~ 

- 2ai (z) - 2az (z)) dz, 

L 

!: 1 (' [eta (z) ( ) a• (~o) = A4 +;t.) aa (z) - 2- +a. z 
!; 

- 2ai (z) - 2az (z) J dz. (15) 

Here g = ln (p2/m2 ) and all momenta entering or 
leaving the vertex part are of order p. Introducing 
A = '-1 + '-2• a = 0!1 + a 2 and differentiating Eq. (15) 
we arrive at the following equations: 

da a; 
ds =-4:n:' 

~~· =- ~(~ +a•-2a). (16) 

Dividing the second and third of Eqs. (16) by the 
first and adding the resultant equations we get, after 
Eq. (15) is taken into account, 

d (cxa + a•) fda = - 2, 

aa + <X4 + 2a = Aa + A4 + 2A. := 4CI. (17) 

Further, by quadrature we obtain 

a;-16a2 +32 Cia= A~ +8A (Aa +A•) == 16 Cz. (18) 

Substituting Eq. (18) into Eq. (16) we get 

(19) 

Let D2 = I Cz- ci I. Then for c2- ci = 1!l.s ( 21-a 
+ '-4- 2/-) ( 2/-- t-4 ) > 0 we have 

I 

a = D tg cp + CI, aa = ± 4D/cos cp, <X4 = 4CI - 2a - aa; 

cp = 4Dn-1 (L - £) + cpo, D tg cpo = ~ (2A - Aa - A•). 
(20a)t 

*Equations (15) differ from the analogous equations of 
Ansel'm4 in which a calculational error was commited. The error, 
however, did not affect the qualitative results. 

ttg = tan, ch ""cosh, th =tanh. 

For C2 - CI < 0 we have 

(1.,=Dthcp+C1, aa= ±4Djchcp, 

<X4 = 4CI- 2(1.,- aa; cp= 4Dn-1 (L - s) +cpo, 

D thcpo = i (2A. - Aa - A4). (20b) 

Finally, for C2 - CI = 0 we have 
aa = Aall ± Aan-I (L- s)J-I, (1., =A ±~((J.,a- Aa), 

<X•=4A ±Aa-2a-C(a. (20c) 

The upper sign in the last formula corresponds to 
the case 2/-- t-4 = 0, the lower to 21-3 + 11.4 -2/- = 0. 
We note that for t-3 = 0 the quantities a, a 4 and 
a 3 are equal to their zeroth order values A., t-4 

and 0, and, as in the Thirring model, no mass is 
produced. This case is obtained when the four­
fermion interaction is considered to be due to a 
heavy vector boson with an interaction Lagrangian 
(e1u+a~u + e2v+a~v)Aw 

When the mass m is _equal to zero the expres­
sions (20) for r are valid for arbitrary momenta 
p. Then in the case (20a) r has poles at the points 
cp + cp 0 = 1r/2 + n1r. This is an indication of the ap­
pearance of bound states and, consequently, of in­
stability of the massless solution. Let us note that 
in these same cases there is no "zero charge," 
the renormalized charge remaining finite also in 
the limit L - oo • The behavior of r in the case 
(20c) is determined by the sign of '-a· In what fol­
lows we limit ourselves for the sake of simplicity 
to the case t-4 = 2/-, '-a = -4/-. Then 

a= a./2 =- aa/4 =A [1- 4An-I (L- s)J-I, (21) 

and for A > 0 the massless solution is unstable. 

4. MASS OF THE PARTICLE IN THE ANSEL'M 
MODEL 

We shall seek the particle mass by the same 
method as was used in Sec. 2. We introduce the 
functions G= (Tu(x)u+(y)), F+= (Tv+(x)u+(y)) 
and write out the Dyson equations for these func­
tions: 

(I (p) = Go (p) [1 + ~20 (p) p+ (p)J, 

p+ (p) = Go (- p) ~oz (p) G (p). (22) 

We look for 1: 20 (p) = 1: 02 ( -p) in the form 1: 20 
= ayb (p2 ); then G and F+ are given by Eqs. (5), 
and the equation for 1: is of the form of Eq. (6). 
The irreducible four-pole term K has in this 
case the form 

KCL(>ys(p,- p; p', -p') = ia~ya~sKI + ia~ya~sKz; 
L 

1 (' KI ('I'J);= A4 + 2:n: j l(aa (z) + <14 (z)) 2 - 4a (z) aa (z)l dz, 

L 

Kz ('I'J) = Aa +~ ~aa (z) a (z) dz, (23) 
7) 
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where 1J = ln (pUm2 ), PI= max {p2, p' 2}. The 
equation for ~. analogous to Eq. (7), is written 
as follows: 

11 {p2) = 2i ~ q' ~(~;~~2) [/(1 (p,- p; q,- q) 

+ 2/(2 (p, - p; q, - q)]. (24) 

Equation (24) becomes in the special case (21) 
L ~ 

11 (G) = ~~ ~ 11 (z) dz + 4: (a (6) ~ 11 (z) dz 
0 0 

L 

+ ~ a (z) 11 (z) dz). (25) 
a 

The general solution of the differential equation 
corresponding to Eq. (25) may be written as follows: 

11 (6) = C1 [1 - 4A.rc1 (L- 6)]-'1• 

+ C2 [1- 4A.:rc1 (L- 6)1-'1•. (26) 

Substituting Eq. (26) into Eq. (25) we obtain 

(27) 

The condition for the existence of a nonzero solu­
tion has the form 

1 - 4A.rc1L = 0. (28) 
From Eq. (28) we get 

m =A exp (- :n:/8A.). (29) 
Since terms of order A. were neglected in Eq. (28) 
in comparison with unity, the expression for m is 
accurate only to within a numerical factor multi­
plying the exponential. Correspondingly in the 
asymptotic region p2 » m 2 the quantity ~ (p2 ) is 
proportional to [ln (p2/m2 )r114• We note that in 
this case the approximation of Nambu and the au­
thors, 1•2 i.e., the taking into account of only the 
first terms in expression (23) for K, results in a 
numerical inaccuracy only: the factor rr/8 in Eq. 
(29) is replaced by rr/6. 

fu the original Lagrangian (13) one may intro­
duce a mass term m 0 (u+ayv+ + vayu). Then on 
the right side of Eq. (25) the additional term m 0 

will appear. By solving the resultant inhomoge­
neous equation we obtain the connection between 
the physical mass m and the bare mass m 0: 

m (1- ~~ In A~)'/,= mo. (30) 
Jt m· 

fu the limit as m 0 tends to zero the mass m 
tends to a finite value, determined by Eq. (29). Al­
though the value m = 0 is a solution of the homo­
geneous equation (25), this value is not reached by 
this limiting procedure. 

fu the case under consideration the mass ap­
peared as a result of the pairing of particles de­
scribed by the different fields u and v. Let us 
consider another possibility, namely when par­
ticles of the same type are paired: u with u or 
v with v. The resultant massive particle would 
then be identical to its antiparticle, i.e., these 

would be Majorana particles. fu that case one 
must consider in addition to the function G the 
functions F i = ( Tu + ( x) u + ( y)) and F 2 = ( Tv+ ( x) 
v+(y)). The calculations are analogous to those 
described above. fustead of Eq. (27) for ~ we 
obtain the general expression 
11 (6) = Cdl- 4A:n:-1 [L- 6)1'1• + Cz [1- 4/..:n:-1 (L- 6)1-'1•. 

(31) 
Substituting Eq. (31) into the appropriate inte-

gral equation we get 

c2 = + (1 - 4A:n:-1L)%C1 , C1 = o. (32) 

Equation (32) possesses only the zero solution 
C1 = C2 = 0, i.e., the mass is equal to zero and no 
Majorana-type pairing occurs. 

fu the one-dimensional model under considera­
tion it is possible to form out of the spinors u, u+, 
v, v+ in addition to uayv and uayu a number of 
other scalars, which would in the three-dimensional 
case transform like components of a vector or ten­
sor (for example uaxv and u + ayv). This leads to 
the possibility of pairing of a type different from 
that considered above. It turns out that all these 
pairings are absent if the constants are so related 
as to result in Eq. (21); for different relations 
among the constants some of these pairings do 
appear. 

When the relation (29) is taken into account the 
expression (21) for the vertex part becomes 

a (p2) = :n: /4ln (p2/m2). (33) 

Consequently, in the asymptotic region p2 » m 2 

the effective interaction (33) depends only on the 
observable mass m and does not contain the bare 
constant A. or the cut-off parameter A. 
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