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A relativistic theory is constructed for reactions in which there are three or more product 
particles. This is an extension of the theory of reactions of the type a + b- c + d in the 
form given by Jacob and Wick and by Chou Kuang-Chao. In this case it has been found nec
essary to use other variables instead of the Jacobi variables for the relative momenta of 
the particles. The selection rules for such reactions that follow from parity-conservation 
are written out. 

l. There is a well known form of relativistic gen
eral theory of reactions of the type a + b - c + d 
(that is, there are general expressions for the an
gular distribution and the polarization in terms of 
phase shifts ) , which uses the description of the 
spin state in terms of projections along the mo
menta of the particles .i-3 Besides being relativ
istic, this form of the theory has the great advan
tage that its formulas are less cumbersome as 
compared with the widely used formulas of phase
shift analysis (which are used, for example, in 
the phase-shift analysis of p-p scattering). 

In the present paper the method of Chou Kuang
Chao, Jacob, and Wick, and also that of a previous 
paper by the writer, i-3 are applied to construct 
the theory of reactions of the type a + b - c + d 
+ e + ... (and also a- c + d + e + ... ). The 
spins and rest masses of the particles are arbi
trary. It is shown that in the relativistic theory 
it is necessary to use instead of the variables of 
Jacobi (cf. e.g., Fabri4 ) different momentum 
variables, which were first used by Dalitz for the 
description of T decay. 5 

2. Let us begin with the case of three particles 
a+ b- 1 + 2 + 3. The main propositions of the 
theory of reactions are presented, for example, in 
the papers by Jacob and Wick2 and by the writer. 6 

First of all we must introduce instead of the 
momenta Pi• p2, p3 of the three particles the total 
momentum P = Pi + p2 + p3 and two relative mo
menta p and p' (whose exact definition is given 
later ) . The conservation of P allows us to elimi
nate this variable from the description of there
action. 6 Hereafter we shall suppose that Pi + P2 
+ p3 = o. 

Our main problem is to find the transformation 
functions <pp'm1m2m3 j ••• JM> which enable us 
to go from the description in terms of experimen
tally measured quantities (the momenta of the par
ticles) to a description in a representation that in
volves the conserved total angular momentum J 
and its projection M. The analogous function for 
two particles is of the formi-3 

. ' ·~. --. /2i + 1 i 
(pm1m2l m1m2p1m) - J1 ~ Dm,+m,. m(- :n:, tl', :n:- <p) 

(1) 

The total angular momentum j of the two particles 
and its projection m are referred to the center-of
mass system (c.m.s.) of the two particles, with ar
bitrarily chosen axes z', y', x'. J and cp are the 
spherical angles of the relative momentum p of the 
two particles in this system of axes; mi and m2 
are the spin projections of particles 1 and 2, re
ferred to the system of axes zc II p and Yc II [ z' xp] 
(referred to Lorentz frames which are the rest 
systems of the particles), and mJ. and m2 are 
quantized relative to the same axes zc, Yc. Xc, 
but are referred to the c.m.s. of the two particles. 
The factor q appears as a result of the transfor
mation of the spin variables from the rest systems 
of the particles to the c.m.s. 3 

To solve the problem with three particles we 
can in principle go from the variables ( pmim2 ) to 
the variables ( mJ.m2jm) and then from ( p'mm3 ) 

to ( mm3JM), regarding the system of particles 1 
and 2 as if it were a single particle with the spin 
variable j. If, however, we use the Jacobi vari
ables (for example, Pi = p' /2 + p, P2 = p' /2- p, 
and p3 = -p' ), the spin projections along p will 
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not be projections along the momenta of the par
ticles ( helicities). And in the formula (1) m 1 
and m2 must be such projections. 

Let p be the momentum of particle 1 in the 
Lorentz system K1, 2 in which the total momentum 
of particles 1 and 2 is zero. 5 Then - p is the mo
mentum of particle 2. For the total momentum of 
the system ( 1, 2, 3) to be zero, the total momen
tum of the system ( 1, 2) (relative to the c.m.s. 
K1, 2,a of the three particles) must be equal to - Pa 
or +p'. The velocity {3 of the system K1, 2 rela
tive to K1, 2,a is p' /E1, 2, where E1, 2 = (p' 2 + Kt 2 )112, 

where K 1, 2 is the "mass" of the system ( 1, 2) 
( K 1, 2 is defined in the usual way as the total energy 
of ( 1, 2) in the Lorentz system in which ( 1, 2) is 
at rest: 

X = v/)2 .J_ x2 .J_ l rp2 + x2 • 
1.2 I 1 I I 2 ' 

the speed of light is taken to be unity). The mo
menta of particles 1 and 2 in K1, 2,a are obtained 
by Lorentz transformation ( cf. Sec. 18 in the book 
by M~ller7 ): 

- , [ p'p (/ £1.2 1 \ lf p' + xi J 
PI - P - P -,o --- } - ' 

p .. \ xL 2 .~ x 1. 2 

, [ p'p (, EI 2 ) V P2 +xi l (2) Pz = - p - p - ~ -·- -1 - , 
p xl. 2 xl.2 J 

To find p, knowing the momenta p1 and p2, we 
must make the inverse transformation 

p = PI +(PI + P2) [(Pl +,P2. p;) ( £1.2 - 1) - -v~ J ' 
(PI -r P2) xl.2 xl.2 

X1.2 = V Ei.2- (Pt + P2)2 . (3) 

Thus if Eq. (1) is written for particles 1 and 2, 
then p must be the Dalitz variable, and m1, m2, j, 
and m must refer to the Lorentz system K1 2. The 
transformation function from (p'mma) to (~'m3JM) 
is also of the form of Eq. (1), and the required func
tion is given by 

LJ<pm1m2 1 m~m~pjm) <p'mm3 \ m'm~p' JM) 
m 

.!zi+1vj ( ·"' ) = v ~ m,+m, m' - n, u, n - cp 

V2J + 1DJ ( ·"'' ') X --.r;n- m'+m,, M - n, u , n - cp 

X o, ~;o ,q (m', m~, p') 
p' p m3, m3 " 

= (pp'm1m2m3 1 m;m~m;jm' JMpp'). (4) 

In this formula J, M, j, m', and m3 refer to the 
system K1, 2,a, M is quantized relative to some 

I 

axis system z, y, x, and ,y .. and cp' are the spher
ical angles of p' relative to z, y, x. The projec
tions rna and m, and also m3 and m', are quan
tized relative to a system of axes with z' II p' and 
y' II [z x p' ]; J and cp are the spherical angles of 
p in this same system of axes, i.e., J is the angle 
between p and P'. Finally, m 1, m 2, rna relate to 
the rest systems of the respective particles. 

An important further virtue of the Dalitz vari
ables is the possibility of expressing the total en
ergy of the system of three particles as a function 
of I P I and I p' I only: 

E = EI.z+YP'2 +x;= [p'2 +(Vp2 + x~ 

(5) 

In the case of Jacobi variables E would also de
pend on the angle between the relative momenta, 
and the law of conservation of energy could not be 
written in the representation containing the abso
lute values of the momenta and J, M. 

We can now write the following expression for 
an element of the S matrix (or of the matrix R 
= S - 1 ) of the reaction a + b - 1 + 2 + 3: 

<pp'm1mzmaiS IPamamb) = !r- LJ (2J +I) V2j + 1 
4n: f 4n: j,m,J,M 

xD~,+m,,m(-n, 'fr, n -cp)D~+m,,M (-n, {}', n -cp') 

X <mlm2majmp I sJE I mamb> v;;:a+mb,M(-n, 'fra. n- cpa). 

The functions q are included in the notation 
( I sJE I ) . More exactly, after going over to a 
representation containing J and M, by their aid 

(6) 

we can return from the representation in the pro-
jections m1, m2, m3, and m' [see the explanation 
of Eq. (4)] to the representation in m 1, m 2, rna, 
and m (cf. reference 3). 

We can perform6 the summation over M and get 

LJD~+m,,M (- n, {}', n -cp') D;,a+mb.M (- n, 'fra, n -cpa) 
M 

(7) 

where J' and ";p' are the spherical angles of p' in 
the axis system za, Ya• xa relative to which rna 
and mb are quantized (in particular, za II Pa>· 
Therefore we can write element (6) in the form 

<m1mzmapp' IS({}, <p, 'fr', <p') I mambpa) 

(here and in what follows we omit the signs 
over J' and cp'). 

The formula for a - 1 + 2 + 3 has the analo
gous form 

<pp'm1mzma IS I JM) = 4~ LJ Y(2j + 1) (2J + 1) D~,+m,,m 
j,m 

X(- n, {}, n -cp) 

X D"[,+m,,M (- n, {}'' n- <p') <mlm2majmp I sJx I). (8) 
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Here J denotes the spin of the decaying particle, 
M its projection with respect to some axis system, 
and K the rest mass of the decaying particle. 

3. With the usual method of compounding angu
lar momenta by means of Clebsch-Gordan coeffi
cients we get for a + b - 1 + 2 + 3 the following 
formula (if the rest masses of all particles are 
different from zero): 

(pp'rnrt2nsiSipananb) =~YztL(it,<p) Y1·.,.·(it',<p') (i1i2nrn2l ia) 

X (ilatt ijni)(ji3nins I s'n') (s'l'n'tt' I JM> 

X < iljs' ['pI sJE I slaP a> (slantta I J M) 

X (iaibnanb I sn) v;a>'a(ita, <pa). (9) 

In Eq. (9) all of the spin projections n are quan
tized relative to a single system of axes z, y, x, 
to which all spherical angles also refer; i 1, i2, i 3 
are the spins of particles 1, 2, 3; the summation 
is over repeated indices. The formula (9) is also 
relativistic, if we understand p and p' to be the 
Dalitz variables and use for the description of the 
relativistic spin the representation of Foldy and 
Yu. Shirokov.8 The formula (6) can be obtained 
from Eq. (9). To do so we must go over to spin 
projections along the directions of the momenta 
of the particles (m-projections) by means of the 
relation 

(10) 

where g is the rotation that brings the axes z, y, 
x to coincidence with the corresponding system of 
axes for the m projection. On carrying out some 
rather cumbersome transformations (cf. e.g., Sec. 
2 of reference 6), we get the formula (6), if we use 
the notation (cf. reference 1 and Appendix B of 
reference 2) 

(m1m2m3jmpiSJ£ lmamb) = ~ {V~~ t ~ (iti2m1m2Jim1 +m2) 

x (ilmt + m20 ljmt + m2)} {V~~ -t 11 (jismmsl s'm 

+m3)(s'['m+ma01Jm +ma)}(ifjs'l'pl SJEisfa) 

{~ /21a+1 
X V 21 + 1 < iaibmamb I sma + mb) 

X(slma +m"OIJma+mb>}· (11) 

It is clear how much more cumbersome the for
mula (9) is in comparison with Eq. (6). In particu
lar, in Eq. (6) there is not a single Clebsch-Gordan 
coefficient. Of course they will appear if for the 
description of the spin state of the ensemble of 
particles we use the polarization tensors (cf., e.g., 
references 1 and 6): 

p (qr:) = Y2i + 1 ~ (- l)i-m' (iim- m' I qr:) Pm,m'• 
m,m' 

Here i is the spin of the particle, and Pm,m' is 
the density matrix that describes the spin state of 
the ensemble of particles. The extension of the 
expressions for the angular distribution and the 
polarization tensors of the products of the reac
tion (cf. references 6 and 9, Sec. 1) to the case 
of three particles presents no difficulties. 

4. No important new difficulties appear in the 
extension of the formulas (6) and (8) to the case 
of more than three product particles. Instead of 
P1• P2• p3, ••• one introduces Dalitz variables; the 
spherical angles Jj are the angles between the 
Dalitz momenta. When the number of particles 
is increased by one an additional transformation 
function of the type of Eq. (1) appears. 

5. In conclusion we write out the selection rules 
that follow from the invariance of the transition 
matrix with respect to space reflection and the ex
istence of definite parities for all the particles. 
These rules are obtained in exactly the same way 
as in references 1, 2, and 9. 

We have 
(m1m2 .. ·I R (it, <p, it', <p' ... ) I mamb> 

_ • • (- l)i,+i•+···+ta+ib(- l)m,+m•+···+ma+mb 
- :rt1:rt2 • • • :rtb:rta 

x<- m1,- m2, .. ·I R(it, -<p; it',-<p', ... ) 

X 1- ma,- mb>· (12) 

In terms of the coefficients W introduced by the 
writer, 9 this selection rule has the form 

< I W (-" .o.' ' ) I ( l)q•+··+~a+~b q1T:1... u,<p, u ,<p ... qaT:aqbr:b) = -
( l)~•+···+'a+'b · , X- (qt,-T:!. .. JW({},-<p;{}, 

-<p' • • • .) I qa, - T:a; qh- T:b), (13) 

which in particular means for the angular distribu
tions 

(J (it, <p, it') = (J (it,- <p, it') (14) 

in the case of three particles, 

(J (it, <p, it'' <p'' it") = (J (it. - <p, it',- <p'' it") (15) 

in the case of four, and so on. We recall that the 
angle cp' is measured from the axis x" II [Pax p"] 
x Pa. and the angle cp from x' II [p" x p'] x p". The 
rule (13) (in other formulations) has been repeat
edly mentioned in the literature (cf., e.g., a paper 
by Sona10 ). 

Those azimuthal symmetries in cascade reac
tions involving reactions of the type a + b - 1 + 2 
+ 3 + ... that follow from parity conservation 
are obtained by an obvious extension of the symme
tries enumerated by the writer9 (for cascades of 
binary reactions, i.e., of reactions of the type 
a+b-1+2). 
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