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Conditions for the existence of acoustic excitations are studied on the basis of the quantum 
dispersion equations for electron-ion plasma oscillations. It is shown that in strong mag­
netic fields longitudinal ultrasonic vibrations with a wave vector perpendicular to the mag­
netic field degenerate into ionic vibrations, inasmuch as the screening radius becomes in­
finite in this case. The decay frequency of ultrasonic waves moving along the magnetic 
field, as well as across it, is calculated. The decay frequency thus determined is found 
to oscillate, depending on the magnetic field strength. 

l. Classical theory of longitudinal low-frequency 
oscillations of an electron-ion plasma in a mag­
netic field with a Maxwellian energy particle dis­
tribution in the ground state was considered in the 
work of Stepanov. 1 An attempt at the construction 
of a quantum theory was made in the research of 
Yakovlev and Kalyush; 2 however, since they did not 
take into account the quantum energy of the orbital 
motion of the particles in the magnetic field in the 
ground state, their results did not differ essen­
tially from the results of the work of Stepanov. 
Moreover, the limits of applicability of the result­
ant formulas were not given in reference 2, and 
the damping was not calculated. The final results, 
with the exception of quite insignificant tempera­
ture-dependent corrections, are, in point of fact, 
the consequence of the hydrodynamic approxima­
tion in the description of the motion of ions inter­
acting according to a screening law. Finally, it 
should be remarked that the assumptions made 
therein for the calculation of the acoustic branch 
at low wave numbers, for waves propagating across 
the magnetic field, contradict the result obtained. 

The purpose of the present research was to con­
struct a theory of low-frequency oscillations of the 
electron-ion plasma which would take into account 
the quantization of the energy of the orbital motion 
of charged particles in the magnetic field, and also 
to explain the dependence of the ultrasonic attenua­
tion coefficient on the direction of the magnetic 
field. 

2. We pause briefly to consider the specific 
case of absorption of ultrasound in a metal, which 
we shall approximate in what follows by an electron­
ion plasma. We shall represent schematically three 

Electrons f-------- Lattice 
'rz 

FIG. 1 

mutually interacting subsystems: the ultrasonic 
wave, the electrons, and the lattice (ions). The en­
ergy of the regular motion of the ultrasonic wave 
can dissipate via the channels shown in Fig.· 1. For 
metals, the relaxation time Ta is always large in 
comparison with T1 and T2; therefore, in what fol­
lows, we shall not take it into account. 

Two limiting cases can be separated, depending 
on the ratio of the ultrasonic wavelength A and the 
mean free path of the electron l, which is deter­
mined by the collisions with the lattice. The first 
case occurs when T2 » T1• Here, the slowest proc­
ess is the transfer of energy obtained by the elec­
trons from the ultrasonic wave to the lattice. This 
case corresponds to a wavelength A » l. The elec­
trical conductivity of the metal plays the principal 
role in such a case. In the second case, T2 « T1• 

This situation is realized when A « l. Here, the 
slowest process is the process of energy transfer 
from the ultrasonic wave to the electron; therefore, 
collisions .of electrons with the lattice do not play 
any role and can be neglected. 

In the second case, we can consider the electron­
ion system in the plasma approximation. The mech­
anism of energy transfer from the regular collec~ 
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tive motion of the plasma to the individual, random 
motion of the electrons was first established by 
Landau3 in the case of damping of plasma waves. 
Further investigation of this mechanism in the 
study of ultrasonic damping was undertaken in the 
researches of Silin4 and Kittel. 5 The effect of the 
magnetic field on the damping was not studied in 
these researches. An attempt is made below to 
study the effect of the magnetic field on the ultra­
sonic absorption coefficient within the framework 
of the plasma model of the metal. 

3. The quantum dispersion relation was found 
earlier for longitudinal oscillations in a system 
of particles of one kind. 6 The result is trivially 
generalized to the case of several kinds of par­
ticles interacting with one another by Coulomb's 
law. For the case of an electron-ion plasma, the 
dispersion equation has the form 

. G (q) 2 {' fot (Ei~+~z· n•)- fol (£\,~. ,J 
I= hm 2 21i2ct2 ~ Fnn' (qx) \dkz (1 ) (1 ) _ , . ~ 

Y-+0 1t nn' .) Ekz+qz,n'-Ekz•" liw,zli, 

z2 \ foz (£i2}+q2 ,n')-foz(Eh21.n) } + ...,- \ dkz ( ) ( ) , 
~ • E"2z+qz·"'-Ek~.n-liw+iliy 

(1) 

where 

G (q) = 4ne2lq2 , a 2 = c1ileH, Wjc = eiHim(, 

E~l. n = 'h2k;l2mf + 1iWjc (n + 1/z) 

(j = 1, 2; 1 refers to electrons and 2 refers to ions ) , 

Fnn' (qx) 

= (n !In'!)'/, exp {- a2q;l4} (- aqxf'JI2)"'-'L~'-n ( a 2q;/2), 
' ' d" L~ _, (x) = (lin!) e-xxn -n- (exxn'), n' ;> n, 

dx" 

f01 is the degenerate Fermi function, f02 is the 
Maxwellian distribution function of the ions. 

For simplicity, we shall neglect the chaotic mo:.. 
tion of the ions, although consideration of this mo­
tion does not present any difficulties. In the de­
scription of the ions, this approximation is equiva­
lent to the hydrodynamic approximation. In such 
an approximation, we have 

. G(q) 1 2 ~ fo1(£~~tq2 ,n')-fot(£~~.n) 
I = ~~ 2n2fi2ct2 h F nn' ( qx) ~ dkz £(1) '- £(1) -liw + iliy 

' nn' kz + qz ' n kz' n 

cos 'fr = cos (q H), (2)* 

where N02 is the mean number density of the ions. 
From Eq. (2), under the condition 

(3) 

*(qH) = q·H 

it follows that 

I =- k~ (qx, W, qz)lq2 --i-- W~ziW2 -~- ie" (qx, W, q2 ), (4) 

where 
" G (q) " pz ( ) I t. (F(l) ) e = ?n!i•ct• .:::J nn' qx \ 01 k:z." 

- nn' ~ 

. .._ (E<Jl E<ll , 1i ) .._ (£<1l )\ {u kz -Qz• n'- kz, n -~- (I) - u kz+Qz• n' 

-E),~. n -1iw)} dk 2 , 

' f (£(1) .) - f (£(1) ) 
_ 2 _ ~ p '\l p2 , ( ·) \ dk 01 kz+ Q2 • 11 01 1< 2 , n 

ko - n!i•ctz 4.1 nn qx ~ z £(1)' '- £(1) - nw 
nn' kz,qz·" kz,n (4a) 

The symbol P means that the integral is taken in 
the sense of the principal value. 

Neglecting damping entirely, we find from (4) 
that 

(5) 

w02 is the Langmuir frequency of the ions, while 
w01 is the Langmuir frequency of the electrons; 
the quantity k01 can be interpreted as the screen­
ing radius. Introducing the longitudinal complex 
dielectric constant of the electrons in the magnetic 
field 

B = e' + ie" = I + k~(qx,W,qz) I q2 + ie" (qx, W, qz), (6) 

we can interpret Eq. (4) by a clear cut elementary 
model. 

Actually, let us consider the oscillations of the 
ions, which are described in the Fourier represen­
tation by the equation of motion 

WVq = (Zelm2)q([!, 

by the equation for the potential cp 

q2([J(q, w) = (4:rZeiE (qx,w,q,)) p(q, w) 

(7) 

(8) 

( p is the number density of the ions), and by the 
equation of continuity 

No2Q•Vq + w p = 0. (9) 

From Eqs. (7)- (9) we find the frequency: 

(10) 

If we assume that E' » E", we immediately obtain 
Eq. (4) from (10) with the aid of (6), 

For the existence of an acoustic branch of the 
vibrations, we must find such a solution for E 

which has the following asymptotic behavior: 

lim e' ~ const I q2 • 
q-+0 

Thus the role of the electronic system reduces to 
screening the Coulomb field of the point ions and 
to damping of the acoustic oscillations. In the ab­
sence of a magnetic field, the plasma is isotropic; 
if the ion velocities are small in comparison with 
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the electron velocities, then the screening is 
spherically symmetric. The screening is aniso­
tropic in the presence of a magnetic field. As is 
seen from the definition, k0 depends upon the 
angle J between the vectors q and H, and on the 
frequency w. Inasmuch as the sound velocity is 
determined from k0, it is clear from (5) that the 
magnetic field leads to space-time dispersion of 
the acoustic oscillations and to anisotropy in the 
sound velocity. 

We shall consider below the dependence of k0 

on the parameters of the system in different lim­
iting cases, since the general formula for k0 is 
too complicated for investigation. 

4. We shall consider first the conditions under 
which we can neglect both the space and the time 
dispersions of the sound velocity and its aniso­
tropies. In the case of a completely degenerate 
Fermi function, the expression for kB can be 
written in the form 

kt ~m,e" '' pt ( 1 
- II ~~ --:tJi2:~_ LJ nn' qt) q; 

nn' 

J 12 V:Tqt(n 0 -n') 0
' !-qg L.-(n'-n) 

lin Q-+- fL. qo(n0 ---n'{', -~- q~ 4- (n' -- n) 

Q 1 yX q"(nu -n)''- q~; 2---(n'---n) l (11) 
ln --- - ,. _ r• 

\l fL.qt(n,--n) '--q~ '2.-(n'-n)' 

where the dimensionless quantities 

Q -- w I ul 1c• q, = aq_,-, 

have been introduced ( J.-Lo is the chemical potential 
of a degenerate Fermi gas in a magnetic field). 

For q1 and q2, and Q « In' - n I, and also 
n » 1 (large quantum numbers), it follows from 
(11) that 

(12) 

where v0 is the Fermi velocity. 
It is easy to see that these conditions corre­

spond to the case in which the Larmor radius of 
the orbit is small in comparison with the sound 
wavelength. Only in this case can the dispersion 
of the sound velocity and its anisotropies be neg­
lected for q2 « kB. 

We now return to a consideration of the depend­
ence of k 0 on the magnetic field and on the angle J 
between the field and the wave vector of the sound 
wave. It is shown that k 0 vanishes for J = 1r/2 in 
the case of very strong magnetic fields. Actually, 
it follows from (11), for the case qz = 0, that 

_ k2 = 11 YX nt,e2 "pt , ( , (no-n)'/,- (no-n')'/, (13) 
o :th2:t LJ nn qJ) Q-(n'-n) • 

1111' 

The quantity k0 vanishes for n0 < 1. This means 
that the screening radius becomes infinite in a di-

rection perpendicular to H. This was also to be 
expected, since the frequency of plasma oscilla­
tions vanishes for n0• < 1 in the direction J = 1r /2 
(see reference 6). 

The vanishing of the frequency of plasma oscil­
lations for J = 1r /2 can be illustrated by analogy 
with the oscillations of plasma in a periodic field. 
In the case n 0 < 1, all the electrons are found in 
the level with n = 0, and the nearest level n = 1 
is separated by an energy tiw1c > E0 (for metals, 
E0 ~ hw 01 ). In the band model, this is analogous 
to the situation in which the completely filled band 
is separated by an energy gap .6-E from an empty 
band, and plasma oscillations are impossible if 
.6-E > liw01 • We note that the screening radius in 
the direction of the magnetic field does not depend 
on the field, since lim F nn' = Dnn', and the mag-q-o 
netic field falls out of the expression for kB. 

Thus it is shown that the screening radius, 
which has a constant value (independent of the 
magnetic field) along the field, can become infi­
nite for J = 1r /2 in strong fields. It follows from 
what has been shown that the acoustic vibrations 
degenerate into ion vibrations with a frequency 

(14) 

in the case n0 < 1 and J = 1r/2. 
The development of acoustic oscillations for 

J = 1r /2 comes about abruptly when n0 reaches a 
value equal to unity. Upon further decrease in H, 
the dispersion of the sound changes abruptly every 
time n0 increases by unity, since new components 
appear in (13). 

5. We now proceed to our fundamental problem 
-the investigation of the attenuation of ultrasonic 
vibrations. The damping frequency y is expressed 
in accord with (14) by the following formula 

y o.= /~IJ(J):2G (~) 2J F~n' ( q,) ~ d'(,f 01 ( Er,, n) 
ur :tW02 nn' 

;< {o (Er, q,, n'- Er,, n -t- Q)- o (Er,:q,,n'- Er,,"- Q)} 
(15) 

for w » y (which is confirmed by the result). For 
q1 = 0 and tiw « E0, it follows from (15) that 

(16) 

If we neglect the dispersion of the sound velocity 
in (16), then (16) goes over into the following for­
mula 

(16a) 

which was first obtained by Silin,4 and later by 
Steinberg. 7 It also follows from (16) that y does 
not depend on the magnetic field for a longitudinal 
ultrasonic wave with q II H. 
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The greatest interest attaches to the ultrasonic 
wave with q 1 H, since the properties of the elec­
tron plasma in a direction perpendicular to H 
change appreciably in a magnetic field ( in con­
trast with its properties in a direction parallel 
to the field). It follows from (15) that in this case 
y has the form 

m1w3 G (q) n,-n 2 '/2 

y ii>=rcfz = r-'- = V2 nfi2:xw2 ~ F n. n+n (q) {(no - n) 
02 n=O 

(17) 

This expression is very complicated in the general 
case. 

For small values of the quantum number ( n "' 1), 
the value of y 1 undergoes a discontinuous change 
upon change in the magnetic field strength, since 
the number of components in (1 7) changes abruptly 
upon an increase or decrease of n0 by unity. For 
large quantum numbers n » 1, the asymptotic 
expansion 

F;,, n+D. (q) = J~ [q (2n + Q + 1)'1'], (18) 

can be used where JQ(X) is a Bessel function of 
the first kind of order Q. If we take into account 
the inequalities n » 1 and n0 » Q, we can convert 
in (17) from summation over n to integration and, 
expanding the term in curly brackets in a series 
in Q, we obtain 

"/2 
m1w'G (q) y;z;;- ~ 2 ( 9) Y ~ Jn(r,qsinm)sincpdcp, 1 

r ~ ,r2 "2 2 "' - r " crwo2w,, o 

where rc = v0/w1e. The last expression can be 
rewritten in the form 

r./2 

"l_1 = 2r,q \ J;l (r,q sin cp) sin cp dcp, 
To ~ 

0 

where Yo is determined by Eq. (16). 
Upon removal of the magnetic field, Eq. 

changes to the equality 

since the anisotropy disappears. 

(20) 

(20) 

(21) 

For large values of the argument, or, more pre­
cisely, for rcq » Q, the Bessel function can be re­
placed by its asymptotic expansion: 

J0 (x) = Y2frcx cos (x -rcQj2 -rc/4); (22) 

0.50 

0,20 
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FIG. 2. Dependence of Yl /y0 on rcq for Q « 1, according 
to Eq. (20). 

We then get in place of (20) 
r./2 

11~ = ~ ~ cos2 (r,qsincp- ~ Q- :)dcp. 
0 

The latter integral is equal to 

y_1/Yo = 1 +sin rrQJ0(2r,q) 

+ cos rcQ [2Q0 (2r ,q) - S 0 (2r cq)], 

(23) 

(24) 

where Q0 and S0 are respectively the Lommel­
W eber and Struve functions. 

For H - 0 or r - oo, the ratio y 1 /yo = 1. 
This is seen immediately from (23), since cos2 (x) 
can be replaced by its average value (equal to %) 
for rc- oo. 

The dependence of y1 /y0 on rcq, which fol­
lows from (20), is shown in Fig. 2. 

In conclusion, we note that Eq. (20) is valid 
under the assumptions A. « l, Eo » nw1c and 
Eo» nw(q). 

1K. N. Stepanov, JETP 35, 1155 (1958), Soviet 
Phys. JETP 8, 808 (1959). 

2 V. A. Yakovlev and A. V. Kalyush, JETP 39, 
308 (1960), Soviet Phys. JETP 12, 219 (1961). 

3 L. D. Landau, JETP 16, 574 (1946). 
4 V. P. Silin, JETP 23, 649 (1952); 38, 977 

(1960), Soviet Phys. JETP 11, 703 (1960). 
5 C. Kittel, Acta. Metal. 3, 295 (1955). 
6 P. S. Zyryanov, JETP 40, 1065 (1961), Soviet 

Phys. JETP 13, 751 (1961). 
7 M. S. Steinberg, Phys. Rev. 111, 425 (1958). 

Translated by R. T. Beyer 
231 


