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Field theoretical methods are used to study a fermion gas with Coulomb interactions at zero 
temperature. We renormalize the interaction lines and the free particle propagation lines so 
that we can take correlation and exchange effects of the interaction into account. We have 
evaluated in the high-density limit ( Gell-Mann-Brueckner limit) the momentum distribu
tion function of the particles at zero temperature. The applicability of the high-density ap
proximation for describing the interaction between the electrons in a metal is discussed. 

A timely problem of solid state theory is the erators in the Schrodinger representation ( a = ± % 
study of the interaction between particles in sys- is the spin index); v <I xI> is the Coulomb inter-
terns with a large number of degrees of freedom. action potential: 
The use of quantum field-theoretical methods 
(see references 1 to 10 and others) based upon 
the introduction of Green's functions, i.e., particle 
propagation functions, has turned out to be very 
fruitful for solving this problem. 

The present paper is devoted to a study of the 
effects of inter-particle interactions in a high
density electron gas. The first to pose a similar 
problem correctly were Gell-Mann and Brueckner8 

who evaluated the electron gas correlation energy 
as a power series in the reciprocal of the density. 
In the present paper we evaluate the momentum 
distribution function of the particles in the ground 
state (this turns out to be different from the 
Fermi distribution function) as a power series in 
the reciprocal of the electron gas density. We note 
that it turns out that there is an essential need to 
use a field-theoretical technique to evaluate the 
momentum distribution function of the particles, 
as the difference between the distribution function 
and the 'Fermi distribution function is itself a 
quantum effect. 

We consider a system of interacting fermions 
with a Hamiltonian* 

H = - 2! 2; ~ dx'IJ: (x) L't.'!Jo: (x) 
0: 

+ + .2:; ~ dxdytJlt (y) '11: (x) v ( I X- y: ) 'lla (x) '11~ (y). (1) 

"'· {l 

Here 1/Ja(X) and 1/J~(x) are the field function op-

*Here and henceforth we measure energies and frequencies 

v (x) = + .2:; v (q) eiqx, 
4ne2 

v(q) =qz (2) 
q+O 

( q ~ 0 indicates that we consider a system of N 
electrons in a space filled with a compensating 
positive constant charge density). We note that 
although most equations in the following are valid 
for any v ( q) any actual calculations are per
formed for Coulomb forces. 

To describe various properties of the interac
tion it is convenient to go over to a time-dependent 
form of the theory. We shall use the Matsubara 
field -theoretical technique1•2 (at T = 0); to do 
this we introduce field functions 1/Ja(x) in the 
''modified Heisenberg representation'' 

x-(x, t), 

[and similarly 1/J~(x) ]. 
The single-particle and two-particle electron 

Green's functions are defined by the usual equa
tions 

(3) 

Go:f3 (x; x') = < T ('Pa (x) '11; ·(X'))), (5) 

Go:J3ys(xi x2; x~x~) = < T ('Pa (x1) '1113 (x2) 'IJ~ (x~) 'IJ~ (x~)) ), (6) 

where ( ... ) indicates an average over the physical 
vacuum, i.e., over that state of the system of inter
acting particles with the lowest energy (ground 
state). 

in the same units; they are connected. through the equation One can obtain in the usual way an equation for 
e: cu. Similarly, we put p : k (p- momentum; k- wave vector). G by starting from the equations of motion (4): 

946 
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(g1 - 2: L\) Gaf3(X; x') 

- ~ ~ dyv (I x- y I) G"Y/3Y (xy; x'y) = 114 (x- x') Ocxf3· 
T (7) 

When there are no periodic or external fields 
GaJj(x; x') = G (x -x') 6aj1· To evaluate the Green's 
function explicitly we can use a formal expansion 
of Eq. (7) in a power series in v. In the zeroth ap
proximation we get 

a<ol (x- x') 

( -+ ~ n(o) (k) exp {ik (x- x')- e~ (I-t')), t < t' 

~ I + ~ (1 ~~~ "'"' (k)) "P {ik (• ~ •') ~ ': (I-- l')l, 
k 

where 

{
i,k<kF 

n<0l (k) = 
0, k> kF 

is the Fermi distribution function at T = 0. 

t :::> t I 

(8) 

The contributions from the first and second ap
proximations are given by the diagrams of Figs. 1 
and 2. To obtain the corresponding contribution 
to G from a given diagram it is necessary to write 

l~. ]_-o ---:--1,, :11 b 

FIG. 1 

:o~ 
a b d c 

FIG. 2 

for each full-drawn line G< 0>(x- x') and for each 
dotted line v (j x- X' I>. The product obtained is 
then integrated over coordinate space at each ver
tex and over the time coordinates of the vertices 
with a different time coordinate* and multiplied 
by ( -1 )n+l2l, where n is the order of the dia
gram, i.e., the number of dotted interaction lines, 
and l the number of closed electron loops. t We 

*The times corresponding to the end points of dotted lines 
are the same as we assume the interaction v to be instanta
neous. 

tSimilar rules for assignments are, for instance, also used 
in reference 3 for the usual time-dependent Green's functions. 

note that diagrams of the type of Fig. 1b lead to 
a zero contribution as the momentum transferred 
along the dotted line is here zero while according 
to (2) q ¢ 0. We have omitted all such diagrams 
in Fig. 2. 

As an example we shall write down the contri
bution from the diagram of Fig. 1a: 

G~) (x- x') = - ~ d4xldylv (I xl- Yl I) a<o) (x- xl) 

X a<o) (xi- YI) a<o\yl- x'). (9) 

We consider the Fourier-representation of the 
Green's functions. If we write 

G (x- x') = v-1 ~ G" (t- t') exp {ik (x- x')}, 
k 

we get from (5) (dropping for the sake of simplic
ity the spin indices ) : 

I (ake-H1at)eE,t, t > 0, 
Gk (t) = (_(at emak) e-E,t' t < 0. (10) 

We now follow Galitskii and Migdal4 and write the 
operators ak and ak_ in the energy representation, 
and (10) is then transformed to 

l ~I (ak)os \2 exp {- (Es- E0) t}, 

Gk(t) = 

-~I (a~·)os \2 exp {(Es- E 0) t}, 
s 

(11) 

(the sum over s is over all excited states of the 
system). 

In the first sum in (11) Es = Es ( N- 1 ) , in the 
second sum Es = Es(N+1). We have Es(N-1) 
-E0(N) = Es-11 + O(N-1); Es(N+1)- E0(N) 
= Es + 11 + O(N-1), where 11 = 8E0 /8N is the 
chemical potential and Es = Es( N) - E0( N) the 
excitation energy ( E s > 0 ) . Hence, 

{ e-r-t 2J \ (ak)os \2 e'-'s 1 , t > 0 

G" (t) = } s (12) 
t-e-r-t2JI(a;)osl2 e'• 1 , t<O. 

Gk ( t) ellt is thus a regular function as t - ±co 
and can thus be expanded in a Fourier integral. 
We change thus to the expansion 

Gk(t) = 2~i ~ Gk(e)e-•1de, (13) 
c 

where the integration contour C is a vertical 
straight line in the complex plane of the variable 
E which cuts the real axis in the point E = 11 
(Fig. 3). 

One can obtain from (12) Lehmann's expansion11 

00 

G ( ) ~ P (k, E) dE 
h B = 

E+~-t-B ' 
(14) 

-00 

where p ( k, E) is a real positive function. Gk( E) 
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FIG. 3 

is a regular function in the upper and lower half
plane of the complex variable € but may have 
singularities (poles) on the real axis.* 

It can be seen from Eq. (10) that once the single
particle Green's function G is known, one can eval
uate the momentum distribution function of the 
particles: 

(15) 

using the relation 

n (k) =-lim Gk (t). (16) 
t-+-0 

n ( k) is equal to the quantum -mechanical average 
of the number of particles in a state with a well 
defined momentum k. When there is no interaction 
n (k) = n< 0>(k) [see Eq. (8)] which corresponds to 
a filled Fermi-sphere (Fermi-filling). The effect 
of the interaction leads to a transition of electrons 
from the Fermi sphere and occupation of states 
with k > kF; as a result there occur holes (k < kF) 
and particles ( k > kF). 

Migdal and Galitskii4•7 considered the distribu
tion function (15) and established some general 
properties of this function. In particular, they 
showed that the discontinuity in n (k) at k = kF 
remains whatever the interaction between the par
ticles. This fact is confirmed in the present paper 
by a direct calculation of the momentum distribu
tion function of the particles n ( k) as a power 
series in the reciprocal of the density of the elec
tron gas. 

We turn to the calculation of n (k). We get in 
first approximation from (9) (see Fig. 1a) 

(17) 

*We note that the poles of the Fourier component of the 
time-dependent causal Green's function G~(E:) (in the usual 
Heisenberg representation) lie either above or below the real 
axis, which corresponds to the presence of damping of the cor
responding quasi-particles. Similar problems have been con
sidered by a number of authors. 3 • 5 • 6 In the present paper we aim 
mainly at studying the momentum distribution function of the 
particles for which the technique used here is relatively more 
convenient. 

2:~1 > = -~ ~ v (q) n<0> (k + q). (18) 

Using (16) we get from this for the distribution 
function 

00 

n<1l (k) = - 2:~1) 2~ ~ 
-co 

The diagram of Fig. 1a leads thus everywhere ex
cept at k = kF to a zero value of n (k), while at 
k = kF, n (k) turns out to be infinite. The same 
is true, as one can easily check, for the diagrams 
of Fig. 2 c, d, Fig. 4 a- e, and so on. 

However, if we sum all such diagrams (i.e., if 
we "renormalize") the infinities disappear. We 
renormalize the free particle propagation lines, by 
taking the sum of the infinite class of diagrams of 
the kind of Fig. la, Fig. 2c,d, Fig. 4 a-e, and so on. 
We shall call all such diagrams exchange dia
grams.* We denote the corresponding renormal
ized propagation function by S ( x- x' ) . In Fig. 5 
we give the graphic equation for S where the thin 
line corresponds to G<0> and the thick line to S. 
One verifies easily that an expansion of S for 
small v leads to the exchange diagrams for S 
which were enumerated in the foregoing. 

a b c d e 

FIG. 4 

X X X 

+ x, --

.T' X' .T' 

FIG. 5 

The equation for S can also be obtained from 
(7) if we put 

Ga~ (x; x') = S (x - x') Oa,s. 

(20) 

It has the form 

*We call exchange diagrams those diagrams which are ob
tained by iterations from diagrams of lower order by succes
sively adding to one of the propagation lines the simplest dia
gram of Fig. la. 
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(_j__-~ f).)S(x- x') at 2m 

+ ~ dy V (\X- y \) S (X- y) S (y- x') = 04 (x- x'). (21) 

Using the Fourier representation we write (21) in 
the form 

M-e)S,.(e) + ~ ~v(q) 2~i ~ Sn+q(e')de'Sk(e)= I 
q C+C, (22) 

(see Fig. 3 for the integration contour). 
One can easily verify that the solution of this 

non-linear integral equation has the simple form 

sk (e) = - - 1- (23) 
8~-8- ~k1 > - 8k - e ' 

where the quantity ~ r> is according to (18) equal 
to 

(I) e2 { k}- k2 1·kF + k /} 1:n = 1t1i kp 1 + 2iik;;- In kp _ k . (24) 

One sees from Eq. (20) that the renormalization 
which we have performed corresponds to taking the 
exchange effects exactly into account in all orders. 
It is clear from (23), as ~~0 is independent of E, 
that when the exchange effects are taken into ac
count exactly the Fermi-filling is conserved, i.e., 
the distribution function n ( k) evaluated by using 
(23) has the shape of a Fermi step-function; the 
limiting momentum kF is connected with the 
chemical potential J.L by the relation* 

2 e2 
f1 = nkp/2m- -;t;f kp, 

kp = (3:n:2n)'l•. (25) 

It will be shown in the following that taking the 
non -exchange part of the interaction into account 
leads to a change in the rectangular form of the 
distribution function. 

We must introduce for the following the energy 
operator M ( x - x' ) which is defined through the 
relation (see, for instance, reference 3) 

G (x - x') = a<o> (x - x') 

+ ~ d4 Xr d4 X2 a<o) (x- Xr) M (xl - x2) a<o>(x2- x'). (26) 

That G is of this form is clear from the structure 
of the graphs for the single -particle Green's function 
which start or end with a free electron line o<0> 
(see Figs. 1, 2, 4). 

If we write down the Fourier expansion of the 
energy operator 

*We note that Eq. (23) is not a trivial consequence of the 
introduction of the principal part of the energy operator !. (see 
reference 4). A similar equation would occur if we summed only 
the diagrams of Fig. la, Fig. 2c, Fig. 4a, and so on. The dif
ference lies in the meaning of the quantities p. and kF. 

M (x- x') = _!_ ~ eik (x-x') - 1- \ de e-•(t-t'> Mk. (e) 
V LJ 2ni ) ' 

(27) 
k c 

we get from (26) 

Gk(e) = G~o) (e) + Gk0> (e) M,. (e) G~o> (e), (28) 

where G~>(€) = (€~>-E)-1. 
We can now express the distribution function 

n (k) in terms of M, using (16), and we get 

1 ~ Mk. (e) n (k) = n<o> (k)- -. de = n<o> (k) + v (k). 
2111 c (e~ _ e)2 

(29) 

The integral in Eq. (29) can be evaluated by 
means of the residue theorem; to do this we first 
split Mk( E): 

M,. (e) = M~ (e) + Mk (e), (30) 

where Mk_( E) is that part of Mk( €) which is regu
lar (without poles ) in the right hand half-plane 
Re E > J.L (Fig. 3) and Mk:( E) is regular in the left
hand half-plane Re E < J.L [if Mk( E) contains a 
part which is regular for all €, i.e., a constant, it 
must be contained in Mk:( E)]. After this splitting 
up we get from Eq. (29) 

v (k) =- - 1-. \ Mk (e) de- - 1- \' M~ (e) de (31) 
2111 ) (e~ ~ e)2 _211i j (eo _ e)2 ' 

C+C, C+C, k 

where c1 and c2 are the semi-circles of infinite 
radius which lie respectively in the left- and the 
right-hand half-planes (Fig. 3). Applying the resi
due theorem to (31) we get 

{
v+ (k), k > kp 

" (k) = v- (k), k < kp, 

v± (k) = ± ( :e Mit (e))•=•( 

(32) 

(33) 

One can show that the ground state energy Eo is 
a sum of the energy of the non-interacting particles 
with a distribution function n (k) plus an extra 
term connected with interparticle correlations: 

E 0 = 2 ~egn (k) + ~ ~ (k), (34) 
k K 

where by analogy with (33) t± ( k) = ± M~ ( €~). To 
evaluate the distribution function it is now neces
sary to start from renormalized diagrams in which 
o<O> is replaced by S. The contributions to G in 
the lowest approximation are the diagrams of Figs. 
2a, b (we retain for the renormalized free particle 
propagation function S in the diagrams the previ
ous notation of a full-drawn line). One can, how
ever, easily verify that the diagram of Fig. 2a 
leads to an infinite contribution; this is connected 
with the divergence of integrals for small momen
tum transfers q. These divergences can be re
moved by renormalizing the interaction lines (see 
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also references 5, 6, 9, 10, and others). To do this 
it is necessary to sum the class of the most strongly 
divergent diagrams which are given in Fig. 6. Here 
the same momentum q is transferred along each 
of the interaction lines. These diagrams corre
spond to virtual creation and annihilation proc
esses of electron-hole pairs (k > kp and k < kp), 
as each upward line in the diagram corresponds to 
a factor 1 - n <O> ( k) in the k-representation while 
a downward line correspond to a factor n< 0>(k). 
Gell-Mann and Brueckner8 were the first to per
form such a summation for an electron gas (in a 
different technique). 

To sum the diagrams given in Fig. 6 we intro
duce an effective interaction potential V (x -x') 
which we define by the graphic equation of Fig. 7 

FIG. 6 :.,_L 
:r- X' :t :t' 
~=---- ... + 

!/, x' 

FIG. 7 

(the wavy line corresponds to V). We have thus 

V (x - x') = v ( x - x' ) b (t - t') 

+ ~ dy dy1 v ( x - y ) F (y- Y1) V (Yt - x'), (35) 

F (x- x') ~0 2S (x- x') S (x' - x). (36) 

For the Fourier component of the function F ( x - x' ) 
we get* 

Fq(t) =- ~- ~ n(oJ (k) (I- n(ol (k ' q)) 
k 

X exp {- (eL-q- e~) t }. (37) 

The function F determined by Eq. (37) is the same 
as the electron-hole pair propagation function in
troduced by Gell-Mann and Brueckner. 8t 

*We can replace S here by the renormalized function G(O) 

obtained from Eq. (8). 
tF is that part of the polarization operator which takes the 

virtual pair creation processes into account. Similarly, V is in 
the present approximation the propagation function of the Bose
branch of the excitations in the system of interacting fermions 
(i.e., the. plasmon propagation function). 

If we write 
00 

Fq(t) = ~i[ ~ Fq(w)e'"'1 dw, 
--co 

we get from (37)* 

Fq (w) = - (mkp,n2 ti) Rq (u), u ~ wiq; 

I { ( 2 -i- q Rq(u) = 2 I -u arctg 2U 
') 

arctg- :- q) 
2u 

_,___!__(1-'-u2-~)ln 4u2-,(2-'-q)2J 
. 2q . 4 L.u 2 -;- (2- q)" f (38) 

(in the last equation we have gone over to dimen
sionless variables q/kp, e:/e:p, u/up, where up 
= :ti.kp /m is the velocity at the Fermi surface). 

One can easily solve Eq. (35) if one goes over 
to the Fourier representation. The result is 

Vq(w) = v (q)/[1- v (q) Fq (w)]. (39) 

or in dimensionless variables 

(40) 

a= (4/7r)(4/91f)1f3 = 0.663. Here rs is the usual 
parameter occurring in the theory of a free elec
tron gas (see, for instance, reference 12) which is 
defined as rs = r 0 /a0, where 47frV3 = V/N = 1/n; 
a 0 = n2/me2 is the Bohr radius; rs,.., e 2• At T = 0 
the quantity r s turns out to be in the case of the 
electron gas the only dimensionless parameter in 
the theory, and the approximation rs- 0 (i.e., 
n- oo) the only reasonable physical approximation 
in which there is a small parameter. 

As the function Rq ( u) does not tend to zero as 
q- 0, but according to (38) is equal to 

Ro(u) = I - u arctg u-1 , (41) 

the result of the summation is to replace the Cou
lomb potential v (q) = 47f/q2 which leads to a di
vergence as q - 0 by the screened potentiai V q ( u ) 
R; 47r/(q2 + arsR0(u)) which no longer diverges for 
small momenta. 

We now shall compute n (k) directly. It is nec
essary in the first non-vanishing approximation in 
V to sum the diagrams of Fig. 6. We have in that 
approximation (the summation is over q) 

00 

M~(e) =- ~ ~ v(q) 2~"t ~ dw 
lk+ql>l<p -00 

Fq(w)Vq(w) 

e-e~+q + iw ' (42) 

whence we get, using Eq. (33) (the summation is 
over q) 

*arctg ~ tan '· 
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v+ (k) = ~ 2J v2 (q) 2~ 
,k+q\<kF 

k>kF, 

1 I 
v- (k) = - v 2J vt (q) 2n 

[k-j-q[<kF 

(43) 

It is clear, first of all, that the relation 

~<kp h>kF 

which expresses the conservation of particle num
ber, is satisfied. This relation is also valid in the 
higher approximations. 

Changing in Eq. (43) to dimensionless variables, 
we get 

00 

v+(k)=~r~ ~ du~1 . (-kx/:12+iu)" 
·-00 lk-J-ql<l 

X Rq(u) 
q2 + ar,Rq (u) ' 

k> 1, 

00 

' 1 dq (' dx 
v- (k) = - pr; ) du j q J (- kx + q/2 + iu)• 

-oo lk-t-<11>1 

k< 1, (44) 

where 

~ = (2/n3) (4/9n)'1• = 0.0175, X = COS (k, q). 

One can immediately easily evaluate the mag
nitude of the discontinuity .6. = v+(1)- v-{1) 
from (44): 

00
\ 

00
\ 

1~ dx R~ (u) A = - pr~ . du .. q dq . , R )' · _ u + i (x + q/2) (q + ar5 q (u) · 
-(X) 0 -1 (45) 

Integrating over x and replacing Rq(u) by R0(u) 
we get the main term of the expansion of .6. as rs 
- 0 in the form 

where the numerical constant A is equal to 

00 ' 

p ~ R0 (u) 1 A=-- -- arctg -du 
a • Ro (u) u 

() 

00 

~= _ ~ \ In Ro(!!l_du 
:x .) 1 + r(' 

0 

(A >O). (46) 

One can also obtain from (44) the asymptotic be
havior of v±(k) near k = 1. It is of the form 

v:1:: (k) = ± Ar,g(j k- 1 l!Var,), [k-11~1, (47) 

where the function g ( ~) is equal to 

g (£) = ~ i~i ' 
00 R~ (u) 

-f ( £) = - ~ --rR'o 7( u..-) ----;£;;-;;2.,.-/ u"2 

0 

{ 1 ~ R'i'(u)} 
x arctg - - -,1- arctg - 0 t- du. 

u uR0 '(u) s 

(48) 

One can find the asymptotic behavior of g ( ~ ) as 
~ « 1: 

g (£) = 1 + ysln s. y = (~/aA) (n/2) 2 (1 + 4 V3/n) (49) 

(in practice, this asymptotic behavior is, however, 
insufficient as one needs to know g ( ~ ) as ~ ,..., 1). 

It is clear from (47) that the particle distribu
tion function v+(k) and the hole distribution func
tion v- ( k) near the Fermi surface will be symmet
rical (Fig. 8). The magnitude of the discontinuity 
of the total distribution function n (k) = n< 0>(k) 
+ v(k) at k = 1 is equal to Z = 1-.6 r:::: 1-2Ars 
(rs-0). 

[ } 
,-----/(-.... 

FIG. 8 

In conclusion we determine the total number of 
particles outside the Fermi sphere (which is also 
equal to the number of holes inside the Fermi 
sphere) N' = 2~v+(k), k > kF; this can be done 
conveniently by starting directly from (44). The 
main term in the expansion as rs- 0 is of the 
form 

n = N'IN = BrY', (50) 

_ 3np f ( -+- 1 ) R~ (u) 
B- --v- .\In 1 , -. ,,- udu. 

4 · cr 0 \ U' r Ro (u) 
(51) 

A numerical integration of Eqs. (46) and (51) leads 
to the following values of the constants A, B, and 
y: 

A = 0.089, B = 0.051, r = 1.61. 

The dimensionless quantity E = Br~2 character
izes the degree of deviation from the perfect degen
erate Fermi gas. rs changes for different metals 
between the limits rs = 1.8 to 5.6, whence E = 0.12 
to 0.67. One may thus expect that for metals with 
the highest electron density the approximation con
sidered here is sufficiently good (there remains, 
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of course, the additional circumstance that we re
placed the metal lattice by a uniform positive back
ground). 

In conclusion I express my sincere gratitude to 
I. M. Lifshitz and G. E. Zil'berman for a discus
sion of a number of problems and also to I. E. 
Dzyaloshinskii for his interest in this paper. 
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