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A number of general problems in relativistic gas dynamics of charged particles in external 
fields and self-consistent fields are considered. An analog is found for potential motion, and 
the theorem for conservation of magnetic flux along a fluid contour is generalized. The one
dimensional problem of relativistic breakup of a charged layer in external fields is solved. 

1. INTRODUCTION 

THE relativistic motion of a conducting gas is 
characterized by a number of features, which can 
lead to effects that are qualitatively different from 
those found for nonrelativistic motion. For example, 
Veksler1 has shown that when an ionized gas mass 
collides with a concentration of magnetic force 
lines the ions transfer an appreciable part of 
their energy to the electrons; the electrons then 
become relativistic, even if the initial gas veloci
ties are nonrelativistic. At relativistic gas veloci
ties this limiting-current effect becomes still more 
important. It leads to a situation such that even for 
negligibly small collision frequencies Veff between 
the electrons and ions (i.e., high conductivity), in 
the reference system attached to a given gas ele
ment E + v x H does not vanish and is determined 
by the inertia force which, in the ultra-relativistic 
limit, can be large because of the relativistic mass 
increase. The magnetic field 'flux through the fluid 
contour is therefore not conserved and the ''freez
ing" of the magnetic lines of force is disturbed. 

Thus, one of the peculiarities of relativistic mo
tion of a conducting gas mass is that the magnetic 
lines of force may not be frozen. As a result, the 
description of this motion by equations which con
tain the two vectors v and H, the hydrodynamic 
velocity and the magnetic field (relativistic mag
netogasdynamics ), is no longer possible. The re
mark pertains especially to transient processes 
in which the inertia force in the accompanying ref
erence system may be large. 

In order to investigate the relativistic motion 
of a cond'ucting gas it is convenient to consider 
relativistic two-component gas dynamics in elec
tromagnetic fields. By virtue of what has been 
indicated above, interest attaches in the relativ
istic case only to the situation in which the friction 
of one component against the other is negligibly 

small compared with the effect of the interaction 
with the self-consistent field. For this reason, 
we can consider the equations separately for each 
of the components in the electromagnetic fields, 
including in the latter external fields and the fields 
produced by all the gas components. 

The relativistic gas dynamics of a neutral gas 
have been considered by Khalatnikov. 2 In Sec. 1 
of the present work we extend the corresponding 
results of Khalatnikov to include self-consistent 
fields and external electromagnetic fields. In spite 
of the fact that the magnetic lines of force may not 
be frozen for relativistic motion of an electron-ion 
plasma, it is found that in those cases for which 
the ion current is small it is possible to extend 
the theorem of conservation of magnetic flux 
along a fluid contour. 

In problems which are of interest in accelerator 
technology, for example the case of a charged elec
tron gas, either the inertia term in the equations of 
motion is considerably greater than the term that 
contains the pressure derivatives, or else the ex
ternal fields have an important effect on the motion. 
In both cases the characteristic dimensions and the 
time intervals, which determine the possibility of 
applying the hydrodynamic analysis, are, to a large 
extent, determined by the initial and boundary con
ditions, and by the variations in the external field. 

In the present work we consider one-dimensional 
relativistic breakup of a charged gas layer in vac
uum when the inertia term is the principal one. We 
also consider relativistic collisions between a 
charged layer and constant external fields. The 
electric fields produced by breakup of a quasineu
tral plasma layer in a vacuum are also analyzed. 

2. SOME GENERAL PROBLEMS 

By virtue of the above considerations, the equa
tion of relativistic motion for a gas of charged par-
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ticles in an electromagnetic field can be written in 
the form of an equation for each component s: 3 

n(s) = n(s) I VI - v(s) 2 
lab ' 

(1) 

Since u4 ~ 0, it follows from Eq. (5) that 

a (W(s) I A ) ~- a (W(s) ' A ax, u 4 'e 4 - ax' u 1 -,- e 11, (6) 

and this proves that the motion is potential. 
where u~s) is the 4-velocity of the gas, p(s) is the 
pressure of the gas w<s) = E(s) + p(s) is the heat 
f t . 't ' 1 (S) . th . t We now consider the case of one-dimensional unc IOn per un1 proper vo ume, E IS e m er- . . 
al 't 1 ·(S) (s) (s) (s) motiOn m the presence of a current perpendicular 

n energy per um proper vo ume, Jll = e n ull t th d' t' f · h h · th t d d b . 1 f . o e 1rec IOn o motwn. We assume t at t e IS e curren pro uce y partie es o a giVen type, 
n<s) is the proper density of particles of this type, charged fluid being considered is an electron fluid 
v<s) is the three-dimensional velocity (the veloc- with charge partially or completely compensated 

by the ion component, whose contribution to the 
ity of light is equal to unity). In addition, each 

current density can be neglected. As before, we 
component obeys a continuity equation 

We determine the motion and the fields, by using 
in addition to Eq. (1) the Maxwell equations 

"'F I ;:, 4 ( ·(0) '1,.1 ·(S) ) 
1J jH uXv = Jt f!'- -+~ LJ J:< , (2) 

where j~0) is the current that produces the external 
fields. Multiplying (1) scalarly by u~s) and taking 
account of the equations of continuity, the condition 
u~s)F JlVj~s) = 0, and u~s)u~s) = -1, we find by virtue 
of the thermodynamic law that entropy is conserved 
along the phase trajectories. 

If at any instant of time (or on some hyper sur
face of the 4-dimensional manifold xll) the entropy 
is the same at all points, then the motion is isen
tropic. In what follows we confine ourselves to 
isentropic motion so that Eq. (1) can be written in 
simple form (w<s) = w<s>;n<s>) 

(3) 

We find an analog for the condition for potential 
motion for a gas of charged particles in an electro
magnetic field. As shown by Khalatnikov, 2 the rel
ativistic analog of this condition for a neutral gas 
is Wull = Bcp/Bxw It is simple to generalize this 
result to the case in which electromagnetic fields 
are present. Introducing the 4-potential of the 
electr-odynamic field All, we see that Eq. (3) has 
a solution of the following form: 

(4) 

which is the required generalization. The fourth 
relation in (4) is an analog of the Bernoulli equa
tion. 

We show further that (4) is always satisfied for 
the one-dimensional nonstationary case. For one
dimensional motion all quantities depend on x1 and 
x4, and Eq. (3) can be written in the form 

assume that all quantities depend only on x1 and 
x4 but u3 ~ 0 and A3 ~ 0. Then, the projection of 
Eq. (3) on the x3 axis gives x0 = - ix4, uie) 
= v<e>y< e), y< e)= (1 _ v< e)2 _ v~e)2) -1/2 

(7) 

It follows from Eq. (7) that the inertia force, 
which may be large at relativistic velocities, dis
turbs the freezing even if the electrical conductiv
ity is infinite, E3 ~ - vH2. Instead of finding the 
relation between H2 and E3, which follows from 
Eq. (7), it is convenient to find the condition im
posed on the potential. We write Eq. (7) in the 
form 

( a + a ) (W(e) (e) A ) d (W(e) (e) 
U1 ax, U4 ax, u3 + e ,1 =liS u,1 + eAa) = 0. 

(8) 
Hence it follows that the quantity p3 = w<e>u~e) 
+ eA3 is conserved along the trajectory. This re
sult is valid not only for one-dimensional motion. 
To satisfy Eq. (8) it is sufficient that all quanti
ties be independent of x3 (cyclical coordinate ) . 

If the inertia term w<e>u~e) can be neglected 
the conservation relation (8) reduces to the con
servation of flux through the fluid contour ( A3 ~ <I>). 
If p3 is the same for all points at the initial time, 
then it remains so at all subsequent times. It can 
be shown that this one-dimensional nonstationary 
motion is always potential motion. The first equa
tion in (3) can be written in the form 

aw(e) a au(e) 
( } _j___ U(e)2 ) -~ _L U(e)~ w(e)U(e) '-- lj:"!(e)U(e) ---1 -

' 1 ax, 4 ax, 1 1 dx, 

= eu~e) (8A4 I axl- ()Al / ax4) + eu~ 1oA:l I OX]· (9) 

We use the identity uie)2 + u~e) 2 + ule)2 = -1 and 
the relation 

eaA3 I ox, = - u~le 1 aw(e) I ox1 - w(e)au~e) I ax]> 

which follows from the condition 
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Equation (9) is then reduced to the form 

_i!_ (W(')u(e) _J_ eA ) = ~ (W(')u(e) + eA ) 
dxl 4 I 4 dx4 1 1 , 

which shows that the motion is potential. 

(10) 

Finally, we consider 3 -dimensional motion and 
obtain a generalization of the Thomson theorem 
for the conservation of circulation of velocity. We 
use the notation p~s) = w<s>u~s) + eAJ.L and for the 
4-curl of this quantity p~BJ = 8p~s) /Bxv- 8p~s) /ax~. 
We now find the substantive derivative of p~BJ with 
respect to proper time 

(11) 

In deriving the last relation we have used Eq. (3), 
u<s>au<s>;ax = 0 and the Maxwell equations a a v • 

ofvp.l i)xa. + aFa.vl OXp. + oFp.a.l OXv = 0. 

It is apparent that in the nonrelativistic limit 
W ~ m, ui ~ Vi, u4 ~ i, Eq. (11) leads in the ab
sence of electromagnetic fields to a relation for 
the conservation of circulation of velocity along 
the fluid contour in differential form. 

3. SOME ONE-DIMENSIONAL PROBLEMS 

a) Relativistic breakup of a layer of charged 
particles in vacuum. The relativistic breakup of 
a layer of neutral gas in vacuum has been con
sidered by Landau4 and Khalatnikov2 in connection 
with the hydrodynamic theory for the multiple pro
duction of particles. In the decay of a cluster of 
charged particles of the same sign the collective 
effect of the total electric field produced by the 
particles may have a decisive effect on its decay. 

We consider the limiting case of a monatomic 
gas at nonrelativistic temperatures. By virtue of 
the proof given above, the one-dimensional mo
tions are always potential, 

Making use of gauge invariance, we can write 
cp = 0 so that the field and the motion of the gas 
are described by the potentials A1 and A0 = - iA4 

only. The electric field is expressed simply in 
terms of Wand u = u1 (u4 = i..fl+U2 ): 

iJ iJ '11'--
eE = -iJ Wu+ -iJ W y 1 + u2 • 

X0 X1 
(12) 

From the electric field equations we obtain the 
relation 

iJE + u iJE 
iJxo V1 + u• iJx1 = O. (13) 

Rather than seek u as a function of x1 and x0, we 
seek x1 as a function of x0 and u: x1 = If! ( x0, u). 

Taking dlf!/du ¢0 and x = ( e/m) E (x0, u ), we 
transform Eqs. (12) and (13) to expressions in the 
variables x0 and u: 

~ +XiJx =I.e!._ a~ 
iJx0 iJu m iJu ' 

a'¢ + % o'¢ - u + .:!j_ G iJ'¢ · (14) 
iJxo ilu - v 1 + u• m au ' 

_J_ ...!_ v~ (iJ'IjJ )-1 iJn J (15) 
' 3 n iJu iJu • 

Here we use W = m +% T0(n/n0) 213, where T0 

and n0 are the initial temperature and density of 
the gas, m is the rest energy and the remaining 
terms are all of first order in T0 /m. 

The density n must be inserted in (14) in the 
form 

1 ax 1 au e2 
n= r 0 V1+u• d'ljJfiJu' ro= 4Jtm. (16) 

Since To « m, the solution of (14) and (15) can 
be found in the form of an expansion in the param
eter T0 /m; we keep onlv the first two terms: 

% = %o + %1T0/m, 'ljJ = 'ljlo +'ljl1T/m +... (17) 

The equations for the successive approximation are 
obtained easily from (15). The system for the 
zeroth approximation 

iJxo --L % iJXo = 0 iJ'¢0 + % iJ'¢o = u 
iJXo I Q au ' iJXo Q au v 1 + Ui_ 

is found to be linear ( the linearity of the equa
tions is trivial for the higher approximation). 
The system ( 18) can be solved successively since 
the boundry or initial conditions for Xo can be given 
independently of physical considerations and apart 
from the constant e/m, Xo coincides with the mag
nitude of the electric field. From the value of Xo 
we then find the solution for the second equation 
in (18). 

We present the results of analysis of the break
up of a charged layer of thickness 2Z. We assume 
that at the initial time x0 = 0 the gas density is 
zero everywhere except for the layer -l < x1 < l, 
where it is constant and equal to the value n0• We 
assume that at the initial time the electric field 
inside the layer is a linear function of x1• With 
these assumptions we find 

'ljJ = uln0r0x 0 + (x0/u)( Jfu2 + 1 - 1), 

u = vy = v/Jf1- v2, (19) 

where v is the hydrodynamic velocity. 
Taking If! = x1, we obtain an implicit expression 

for the velocity v as a function of x1 and x0• The 
solution in (19) applies when II/! I ::::: l + (Zn0r 0 )-1 x 
( >/ 1 + z2n3r3x3 - 1). The equality sign corresponds 
to motion of the layer boundary. The boundary of 
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the layer moves with uniform acceleration when 
x0 « 1/Zn0r 0 and inertially when x0 » 1/Zn0r 0• 

It follows from Eq. (19) that in the nonrelativ
istic limit ( y = 1 + E, E « 1 ) 

(20) 

The energy of the particles increases as the 
square of the distance from the center of the layer. 
At a fixed point it first increases with time and then 
decreases. This last situation is explained as fol
lows: at a given point, for large values of x0 slow 
particles start to arrive from the center (these 
may not have high energies in the weak self-con
sistent fields at the center) whereas the fast par
ticles leave this point. The characteristic time in
terval for the growth of energy at a given point is 
...J 2/n0r 0 • If x0 « 1/Zn0r 0 and 2n0r 0l2 « 1 the maxi
mum energy of the particles at the layer of the 
boundary Emax = %n~r~~Z~ « 1 is nonrelativistic. 
When n0r 0Z2 » 1 and l » x0 » 1/Zn0r 0 the energy 
becomes relativistic. 

It is also easy to find the energy distribution in 
the ultrarelativistic case. The results are as fol
lows: the energy increases linearly with increas
ing x1. The distribution of particle density can be 
found from Eq. (16): 

n -{·1~-1 21 2[ 1 (u2+1lCV1+u2-1)]}-l - · -+- u - n r x0 - '-----'---'-'-'=~o---" 
no - . ' I o o u' V 1 + u2 (21) 

In order to determine the region of applicability 
of the results obtained above, using Eqs. (14) and 
(15) we find the next approximation in T0 /m. The 
criterion is T0/m « n0r 0Z2• The method described 
here has also been used to solve the problem of breakup 
in vacuum with other density distributions, in par
ticular, a layered structure. 

The other limiting case, in which temperature 
effects are basically responsible for the expansion 
of the layer while the interaction with the self
consistent field is treated by perturbation methods 
(high temperatures), is of interest only in consid
erations of multiple production of particles and will 
be considered in a separate paper. 

b) Breakup of a neutral plasma layer in vacuum. 
The ions and electrons will be treated as two 
charged fluids which, at the initial time, have the 
same fixed density in a layer of thickness 2Z. The 
initial temperatures are assumed to be different. 
By virtue of the above, the motion of electron and 
ion fluids is potential motion: 

W<e>u~> = -eA~'- + acp<e> I ax~'; wu>u~> = eA~'- + a!Jl<il I ax1u 

where the index e refers to electrons while the 
index i refers to ions. Carrying out a gauge trans
formation of the electromagnetic potentials AI-! 

=A~ + ox./oxJ-L, we can write x = cp<e> and cp = cp<i> 
+ cp(e). Then the motion of the electron fluid is 
described by the electromagnetic field potentials, 
while the potential cp characterizes the total mo
tion of the two fluids: 

(22) 

The electric fields produced in breakup tend to 
restore the disturbed neutrality of the plasma. We 
consider breakup while the disturbance of neutral
ity is still small. Here, as an approximation, we 
can assume the electron and ion velocities and 
densities to be the same. It then follows from 
Eq. (22) that 

~t = 1.4, 

where \V(i) and w<e) are the values of the heat 
functions at the same densities while u/-L is the 
common velocity. Substitution in the continuity 
equations (for the electrons and ions) leads to 
the standard solutions in which, however, we have 
in place of the heat functions w<i) + w<e>. This 
leads to a change in the rate of decay of the layer 
because we must substitute here in place of the 
velocity of sound 

n d (W-u> , w-<e>) 2 
w<iJ + w<eJ 1Jn T = Cacous· 

At nonrelativistic temperatures 

WU> + ~><el = m<'> + m<e> + -f(TU> + r<e>) (nlno)'1'. 

When T(e) » T(i) we have c~cous = 5T(e) /3m(i). 
In other words, the initial stage of breakup is de
scribed by a rarefaction wave that moves over the 
layer with a velocity determined by the tempera
ture of the electrons and the mass of the ions. fu 
later stages, after collision of the rarefaction 
waves, we ~so have the usual pattern with c~cous 
= 5T<e>;am<1 >. 

It is easy to find, in the next approximation, the 
electric fields and the differences in electron and 
ion density and velocity. For a simple wave we 
have 

(24) 

If we neglect the region in direct proximity to the 
edge of the flowing gas, x <<5x0T4/m, neutraliza
tion starts when x~ » 4m<i)jgm<e>ron0 where ro 
= 4rreo/m. In the stage described by the general 
solution, the electric fields decay more rapidly. 



EXAMINATION OF SOME EQUILIBRIUM PLASMA CONFIGURATIONS 937 

c) Motion of a charged layer into a region with 
constant electric field. We assume that at the ini
tial time x0 = 0 there is a decaying layer of thick
ness 2Z which is breaking up with an initial rela
tivistic velocity Uin » 1 into a region occupied by 
a constant electric field along the x axis, eEin/m 
= Xin (xi). Neglecting temperature effects and 
making use of gauge invariance, we have 

As above, we introduce xi = 1/J ( x0, u) so that 
Eqs. (26) and (27) are transformed to 

(26) 

(27) 

ax + (X + X ) ~ = o a'P + (X ' X ) a'P - u 
axo 0 au ' ax0 I 0 au - f 1 + u2 • 

(28) 
In the problem being considered the solution of this 
system can be obtained in parametric form (the 
parameter t varies within the following limits: 

- 1V I + ufn< t < l Jl I + Ufn) 
"' 

xo = ~ [ V~fn+ I + Xin(t) ('Jl"- t) -
I 

l.j;" 

~ Xin( 'Jl') d1p' J 
I 

>< { [ V uin+ I + Xin(t) W'- t) 

<l>" 

+ ~ Xin( 'Jl') d1p' T - I r·;,d'Jl"' (29) 
t 

.. 
Jl1 + u2 - Jl I + ufn= Xin(f) ('Jl- f)+ ~ Xin('Jl') d1p', (30) 

i 

where X in ( t) is the initial distribution of the proper 
electric field inside the layer. For an initial den
sity n0 constant along the layer, we have Xin = n0r 0t. 
For an external field which increases linearly the 
calculation of Eq. (29) leads to elliptic integrals. 

d) Motion of a charged layer into a region occupied 
by a constant magnetic field. A magnetic field 
causes current to flow, i.e., produces a component 
u3 in the velocity of the electron gas. We assume 
that at the initial time u3 = 0 and that there is no 
magnetic field within the layer, A3 = 0. Hence, by 
virtue of what has been shown above, u3 = - eA3 /m 
if temperature effects are neglected. 

We consider the case in which the shielding of 
the external field by the produced current is small 
and we can take u3 f':i u~ =-elm A~(xi), where 
A~(xi) is the potential of the external field. Find
ing xi = 1/J ( x0, u) we obtain 

aljJ ( ug eH~ ) aljJ u 
axo + X- (1 + u2+ u ~2 )'/, m au = (1 + u2 + u~2 )'/, '(3l) 

ax ( u~ eH~ ) ax 
axo + X- (1 + u2 + u~2)'/• m au = O, (32) 

where H~=-aAVaxi is the external magnetic field 
and x = eE/m is the proper electric field. 

In the case in which a layer 2Z moves at the 
initial time with relativistic velocity Uin » 1 into 
a region occupied by a magnetic field the solution 
of (31) and (32) is of the form 

y I + u2 + ug2 ('Jl) - Y 1 + uin= ('Jl- t) X, (t), 
.. 

Xo = ~ d1p' [V 1 + U~n+ Xin(t) N'- t)J 
I 

For an external field which increases linearly with 
distance the calculation of Eq. (34) leads to elliptic 
integrals. When the magnetic field changes 
abruptly, the calculation can be carried out in 
closed form. 

In conclusion I wish to take this opportunity to 
express my gratitude to V. I. Veksler, M. S. Ra
binovich, A. A. Rukhadze for valuable discussions 
of the result of this work. I also wish to acknowl
edge a number of valuable comments by M. A. 
Leontovich. 
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