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Certain one-dimensional plasma configurations with effective dimensions of the order of the 
Larmor radius are analyzed. 

INTRODUCTION 

!HERE are many plasma systems of practical 
interest whose properties cannot be described 
within the framework of magnetohydrodynamics. 
Typical examples are systems with acute-angle 
geometries and adiabatic traps with ion injection 
( Ogra, Astron). Problems involved in systems 
of this kind were first considered by Ferraro1 in 
connection with the interaction of solar corpuscu
lar streams with the magnetic field of the earth. 
Later, kinetic analyses of certain particular equi
librium configurations were carried out by a num
ber of authors. 2- 5 In the present work we develop 
a general approach to the problem and consider 
several concrete systems. 

As is well known, magnetohydrodynamics ap
plies when the Larmor radii of both electrons and 
ions are small compared with the scale of the field 
inhomogeneities. We, however, shall be interested 
in systems with dimensions of the order of the ef
fective Larmor radius for electrons or ions. Here 
we can consider two limiting cases: in one there 
is a transition region of the order of the Larmor 
radius between the plasma (with no magnetic 
field) and the magnetic field; in the other, the 
entire region occupied by the plasma is character
ized by dimensions of the order of the Larmor ra
dius ( Ogra, Astron). 

In the present work we limit ourselves to one
dimensional problems (all quantities depend on 
one coordinate only ) . 

1. GENERAL RELATIONS 

We first consider the case in which all quanti
ties depend only on the single Cartesian coordi
nate x. If collisions are neglected, the equilib
rium plasma configuration is described by the 
Vlasov equations: 

ofe e ( 1 [ I) ofe Vxax-m E+--c vH Tv=O, (1a)* 

*[vH] ~ v x H. 

Vx.!!!i_ + _!.___ (E + _!_ [vHl)~ = O· ox M c iJv ' 

divE = 4ne ~ (f;- fe) dv, rot H = 4:e ~ v (fi-fe) dv, 

E = - V'<P, H = rot A. (1b)* 

When the magnetic field does not have a longi
tudinal component Hx, the equations for the char
acteristics of (1a) 

mvxdvldx = - e (E + c-1 [vH]), 

Mvx dvldx = e (E + c-1 [vHI) 

have the six integrals 

v~ + v~ + v;- 2e<P/m = C~e. Vy- eAy!mc = Cye, 

Vz- eA 21mc=Cze, v; + vz + v; + 2e<P/ M = C~;, 

However, if Hx ~ 0, the system in (2) has only 
four integrals. We shall limit ourselves to the 
case in which Hx = 0. 

(2) 

(3) 

Knowing the complete set of integrals (3) we 
can write the general solution of the system (1a): 

fe = fe (v2 - 2e<P/m, Vy -- eAy!mc, Vz- eAzlmc), 

{; = ft (v2 +2e<P/M, Vy +eAy!Mc, Vz +eA 2 /Mc). 

Substituting Eq. (4) in Eq. (1b) we have 

d;:. =- 4ne ~ (fi (v, A, <P)- fe(v, A, <P)) dv, 

d2A 4rce \ 
{[X!= - c J v Ut (v, A, <P) - f, (v, A, <I>)) dv. 

(4) 

(5) 

If fi and fe are given as functions of C~, Cy, and 
Cz, then (5) determines the dependence of <I> and 
A on x. This system of equation has one first in
tegral, which expresses the conservation of mo
mentum: 

(6) 

The functions fi,e ( C~, Cy, Cz) are arbitrary 
functions of their arguments. In actual calculation 
they must be chosen on the basis of various phys-

*rot= curl. 

927 
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ical considerations, for example, stability consid
erations. In what follows we limit ourselves to 
configurations which may be called "single
Larmor" systems. In such systems, in which, 
for example, all the ions cross some plane x = x0, 

the electrons may also have this property (two
component systems) or may be characterized by 
a Boltzmann distribution (single-component sys
tems). A unique feature of such systems is the 
fact that assigning the distribution function for 
the "non-Boltzmann" particles in one plane x = x0 

is sufficient to determine the distribution of par
ticles over the entire space. This situation is 
typical of a system in which injection is used. 

Assuming that the potentials 4> and A vanish 
at x = x0, we have 

c~ = v~. 

Whence we obtain the condition 

(7) 

(8) 

This condition determines the region of integration 
over dv in the right-hand side of the equations in 
(5). Substituting the expressions for C~, Cy, and 
Cz from Eq. (3) in Eq. (8), we obtain the following 
condition on the region of integration over velocity: 

v;, + 2e<I>/M > e2A 2/M 2c2 + 2evA!Mc (9)* 

for the ions; a similar procedure holds for the 
electrons. 

If the system has axial symmetry, all quantities 
depend only on r, and in this case Hr = 0; hence 
the equations for the characteristics of the system 
(1a) have a complete set of integrals 

v2 - 2e<I>!m = c~.. r (vcp- eA'Pimc) = C~·· 

v,- eA 2/mc = C.. v2 + 2e<I>/M = C~~. 

r (v., + ek,!Mc) = ccpi. Vz + eAziMc = Czi. (10) 

while (5) is replaced by 

_1_ !!_ r ~ = - 4ne \ (f;- /,) dv, 
r dr dr j 

dd _1_ dd rAoo =- 4:n:e(' Vcp (f;- fe) dv, 
r r r c .\ 

I d dAz 4ne~ 
--r-d-=-- Vz(fi-fe)dv. 

r dr r c • 
(11) 

The solution of (5) and (11) can be simplified 
considerably if the plasma is assumed to be neu
tral. In this case, from the fact that ni = ne we 
obtain a relation between 4> and A and it is suf
ficient to consider the equation for A only. 

2. PLANE ONE-COMPONENT SYSTEMS 

As we have noted above, by one-component sys
tems we mean systems in which the current is due 

*vA=v•A. 

z 

- y 
oL.. 

X 
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to only one kind of particle; the second serves sim
ply for charge compensation and is characterized 
by a Boltzmann distribution n = n0 exp (- Ze4>/T). 
We shall see below that in general the mean en
ergy of the "Boltzmann" particles must be much 
smaller than the energy of the "current-carrying" 
particles if the effect of the electric field on the 
motion of the latter is to be neglected. 

A. Consider a monoenergetic ion beam nor
mally incident on a magnetic field. Suppose that 
at x = -co all the ions have the carne velocity v0, 

which is in the x direction (Fig. 1), while there 
are no magnetic or electric fields ( 4> = 0, A = 0). 
At x = + co the magnetic field is uniform along 
the axis and given by H0, while the electric field, 
and the ion and electron densities all vanish. 

Substituting in Eq. (5) the ion distribution 
function 

/ 1 = 2v0n0o(v2 + 2e<I>/M- v~) o(vu + eA!Mc) o (vz), (12) 

we obtain equations for the potentials 
d2 A = 4nen0 ~ 1 1_ 2e<D _ (~·)2 ~1-]-'/,, 
dx2 c Me [ Mv2. Me. v2. 

- Ot Ol 

d2<D = - 4:rreno {[ 1- 2elD - (~)2 _!___ ]-_-•;,- e•<D!T_(l • (13) 
dx2 Mv~i Me v~1 

Here, n0 is the particle number density at x = - co • 

A = Ay, Az = 0, and T is the electron tempera
ture in energy units. 

Suppose that at the point x = 0 the quantity in 
the radical in Eq. (13) vanishes. This is then the 
turning point for the ions. Consequently, the sys
tem in (13) applies for x < 0; at x > 0, 

(14) 

From Eqs. (13) and (14) and the boundary condi
tions we see that the qualitative behavior of the 
potentials A and 4> is that shown in Fig. 2. 

In the region x > 0 Eq. (14) can be integrated 
with the boundary conditions given above, and we 
have 

X = D, (e-e<D/2T- e-e<D,/2T). (15) 

Here, A0 and q,0 are the values of the potentials 
at x = 0 while De = .../ T/ 47Te2n is the electron 
Debye radius. Thus, the effective thickness of 
electron sheath protruding into the region x > 0 
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is of the order of the De bye radius, as is to be 
expected. 

In the region x < 0 the fields are described by 
(13); it is convenient to write these equations in 
the dimensionless form 

(16) 

Here, 

'ljJ = e<DI T, a= eA I Mcv0£, £ = x! Die. 

a = 2T I M V~i; D ic = c I ro0i, ro~i = 4:rte2n0 I M. 

If Mc2/T » 1, that is, if the electron energy is 
much less than the ion energy, the plasma can be 
considered neutral everywhere except in the re
gion of the ion turning point, whose width must be 
of the order of the electron Debye radius. From 
the neutrality condition we obtain an equation which 
relates 1/J and A: 

(17) 

If a « 1, as we have assumed at the beginning, 
the equations for the potentials assume the form 

d2ald£2 = a I Yl - a 2 , 

'ljJ =-+In (l-a2). 

Equation (18a) has the integral 

(18a) 

(18b) 

+ (dald£) 2 = canst- J!' 1 - a 2 • (19) 

For the boundary conditions a I x--oo - 0, 
a. I x--oo - o the constant of integration is found 
to be unity. Integrating Eq. (19) again with this 
condition, we have 

£ = In \ tg f j tg -~ I + 2 (cos f -cos ~ ) , sin x =a. 
(20)* 

A similar relation has been obtained earlier by 
Ferraro1 but in contrast with his work, in which a 
two-component plasma is considered, in our case 
the transition sheath is of the order of the ion 
Larmor radius rather than the electron Larmor 
radius. 

B. We next consider the plasma system shown 
in Fig. 3, which might be called a single-Larmor 
sheath. As before, we assume that all ions have 
the same velocity and that this velocity is along 
the x axis at x = 0. We assume that the electrons, 
which compensate the charge, are cold. 

This plasma system is described by (18) but the 
integral (19) now assumes the form 

(21) 

Here, 

*tg =tan. 

FIG. 3 

while H1 is the strength of the magnetic field at 
X= 0. 

Integrating Eq. (21) we obtain the variation of the 
field: 
£ =- 4k-2 [£ (k) -E (k,nl2- x)l 

+2 (1 + 2lk2) [!( (k)- F (k, nl2- x)l. (22) 

where k2 =4/(4+ht), a=sinx and E(k), E(k,cp), 
K ( k) and F ( k, cp ) are elliptic integrals. The case 
k = 1 has been considered above. The case k- 0, 
corresponding to h1 - oo , can be easily computed 
by expanding (21) in powers of h11: 

h=hl+h-;1 (1-V1-hW). (23) 

C. We now consider the boundary between the 
plasma and the field in the case in which the ions 
at x =- oo are characterized by a Maxwellian dis
tribution in the presence of cold electrons that 
compensate the space charge (Fig. 1). The ion 
distribution function is assumed to be* 

f = no (nc} )-'/, exp {- v2 I c} }. (24) 

Here, n0 is the particle number density at x- - oo 
while CT is the thermal velocity. Substituting Eq. 
(24) in Eq. (5) and introducing the dimensionless 
variables 

a= eA!Mccr, 'l'Jx = Vxl Cy, 

'l']y = Vy I cr, £2 = x2 4e2no I Me~, 

after integration over Vz we obtain 

(25) 

The region of integration G is determined by 
(9) which, in our case, assumes the dimensionless 
form (cf. Fig. 4) 

'l'J~ ;;> a2 + 2'l']ya. (26) 

Integrating the right-hand side of Eq. (25) over 
TJy we have "" 

ii = T ~ exp {- a2 (1 + £2) 214} d£. (27) 
0 

*In assuming that the electrons are cold, as a first approxi
mation we assume that the electric field vanishes completely. 
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FIG. 4 

Whence, using the boundary condition a= 0, a= 0 
at x - - oo , we have 

00 

• 2= ~- 2 (' exp {-IY (1 + ~2)2; 4} dt 
a 2 .\ (1+~2)" .,. 

0 

(28) 

Integrating once again, we find the explicit func 
tiona! dependence a = a ( ~ ) : 

a oo 

a(£)=V ~ ~dx[i- !--~ exp {-x2 (1 +~2)2/4} 
0 

(29) 

The expression in the right-hand side of Eq. (29) 
is a universal function for a. In choosing the con
stant of integration in Eq. (29) we take account of 
the fact that at small values of a the field in
creases with coordinate according to a power rela
tion and the point at which the field appears is taken 
to be the origin. Calculating Eq. (29) for small 
values of L we have 

a~ 0.0028 ~4 , 

whereas for large values of ~ 

a=~VJt/2. 

A curve of Eq. (29) is shown in Fig. 5. 
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(30) 

(31) 

3. MOTION IN AN AXIALLY SYMMETRIC FIELD 

A. Suppose that a plasma cylinder is formed by 
monochromatic ions ( v = v0 ) and cold electrons 
characterized by a Maxwellian distribution ( T e 
« Mvi/2 ). Suppose further that Hcp = Hr = 0, 
Hz ¢ 0 and that all quantities depend only on r. 
If, in addition, we assume that Viz = 0, the ion 
trajectories in this system will be of the form 
shown in Fig. 6a or Fig. 6b, depending on whether 

FIG. 6 

the Larmor radius is greater than or less than 
the radius of the cylinder. 

For the assumptions made above Eq. (11) 
becomes 

_!I___(__!__ _!I___ r A) = _ 4nQ (_!___ _ eA"' ) [v2 _ (_!___ 
dr r dr "' cr Mr Me 0 Mr -e~~rr•;, (32) 

Here, Q is the radial particle flux while P is the 
generalized momentum: 

Q = enrv, = const, P = r (Mv"' + eA"' I c) = const. 
(33) 

Introducing the dimensionless quantities 

a= eA"'!Mcvo, (34) 

we obtain the following equation for a 

d ( 1 dra ) 4:n:eQ p I r -a 
{[( r (Jr =- Mc2Vo r Y1-(p/r-a)". (35) 

The magnetic field inside the cylindrical tube 
with inner radius r 1 and outer radius r 2 is deter
mined by Eq. (35), where r 1 and r 2 are roots of 
the expression in the radical in Eq. (35). The field 
outside r 2 and inside r 1 is uniform. For a known 
value of a, the constant Q can be expressed in 
terms of the number of particles over the cross 
section of the cylinder N: 

N = ,~ n2Jtrdr. 
r, 

Using Eq. (33) we have 

N = 2:n:Q ~' dr 
cv0 ) y' 1- (p J r- a)2 

r, 

If the ion current is small, Eq. (35) can be 
solved by successive approximations. In the 
zeroth approximation the field is uniform and 

(36) 

Acp = H0r/2. In this case the quantity Q is given 
approximately by 

(37) 

Substituting the zeroth approximation for Acp in 
the right-hand side of Eq. (35) and integrating, tak
ing account of Eq. (37) we obtain an expression for 
the magnetic field H: 

H _ H {I 2e2N r1r2 1 r + r } 
- 0 - :n:Mc• arc cos , 1 + ,2 , 

r1 <:; r < r2. (38) 

For the case shown in Fig. 6a we must take 
r 1 > 0 in Eq. (38) whereas for the case shown in 
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H 
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Fig. 6b, in place of r 1 we must substitute - r 1. 

When r 1,2 - oo Eq. (38) becomes Eq. (23). Curves 
of the function in (38) for r 1 > 0, r 1 < 0 and r 1 = 0 
are shown in Fig. 7. Attention is merited by the 
peculiar variation of the function H (r, r 1, r 2 ) as 
r 1 goes through zero. 

A similar result has been obtained by Tonk.s5 

by numerical integration of Eq. (35). This author 
has considered both dilute and dense plasmas. 
Later, Tonks6 generalized these results to the 
case in which there is a spread of the momentum P. 

Equation (38) shows that the small parameter 
used above in the method of successive approxi
mations is the so-called "linear proton" II 
= e2N/Mc2• It is not difficult to obtain terms in 
the expansion proportional to 11 2 and higher in 
Eq. (38). 

We now consider the motion of particles in the 
cylindrical column. The equation of motion is 

drpldr = Vcp I rvr. 

On the other hand, the field equation ( dH/ dr 
= 47rjcp /c) can be put in the following form 
[using (33)]: 

dHidr =- (4n Qlc) (vcpl rvr)

lt follows that 

H = - (4n Qlc) rp + const. (39) 

Taking account of Eq. (39) and the curves, we see 
that when r 1 > 0 (Fig. 6a), in the first approxima
tion particles do not go around the axis of the sys
tem, whereas when r 1 < 0 (Fig. 6b) they do. 

B. If the plasma is very dilute and the magnetic 
field is very strong, the preceding calculations can 
be applied to a cloud of fast particles in the ab
sence of compensating electrons. In accordance 
with Eq. (33), the density distribution is related 
to the vector potential by the expression 

Q 1 [ ( p \2 ]-'/, n=-- 1-- -a) 
ev0 r r , 

(40) 

Assuming as the zeroth approximation that the mag
netic field is uniform; a = ar, we write the equation 
div E = 47ren in the form 

+ :, rEr = t,~: [ 1- (+-a Yr'1'. (41) 

0 r 

FIG. 8 

Integrating, and substituting the values of Q and p 
and a in terms of r 1 and r 2, we obtain the final 
formula for the electric field distribution inside 
the annular region: 

2eN 
Er = J(;:- arc cos 

ri + r~- 2r2 

r~- r~ 
(42) 

The field inside the ring r < r 1 vanishes while 
the field outside the cylinder is Er = 2eN/r. In 
the case r 1 = 0 the electric field distribution is 
given by the expression 

(43) 

and is shown in Fig. 8. 

4. TWO-COMPONENT SYSTEMS 

As an example of a two-component system we 
consider normal incidence of monochromatic 
fluxes of ions and electrons on a magnetic field. 
In general, the ion and electron velocities will be 
different at infinity, being designated by Voi and 
Voe respectively.* After substitution of the dis
tribution functions 

f, ~ 2v0ino<'l (v2 + 2e<DIM- v~i) <'l(vy+ eA I Me) <'l(vz), 

fe = 2v0en0<'l (v2 - 2e<D/m- v~,) <'l(vy- eAimc) <'l(vz) (44) 
Equation (5) assumes the following form in the re
gion of common motion: 
d21jl 1 d~2 = (c2 I v~e) [( 1 + 1jJ- a 2 )-'1'- ( 1- 61\J --~t6a2 f-'1'], 
d2ald~2 =a[(l +'I'- a 2)-'/, + Vp.6( 1- 81\J- tt6a2)-'1']. 

(45) 
Here 

eAimv0eC =a, 2e<D!mv5e = 1\J, ~2 = x24ne2n0 1 mc2 , 

1ft= ml M, 8 = mv~ef Mv~i-

The ions and electrons have turning points at 

1 +'I'- a 2 = 0, 1 - 81\J - tt8a2 = 0. (46) 

If JJ,(} < 1, the electrons come to rest first, while 
if Me > 1, the ions come to rest first. 

If the plasma is nonrelativistic, then c2/v~e » 1 
and in solving (47) we may assume neutrality, t that 

*The case v oi = Voe has been considered by Ferraro. 1 

tin general, this procedure is valid only for pressures of 
approximately H2/8rr; it may not hold if the pressures are 
much smaller than H2/8rr. 
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is to say, ni = ne· Then the first equation in (45) 
gives a relatio!]. }?etween 1/J and a: 

1p = (I- ~dl) a2/(l + 8). (47) 

Substituting this value of 1/J in the second equation 
of (45) we have 

(48) 

where 

a1 =a [(I + r.t)8/(l + 8)]'/,, £1 = £ [I + V ttflJ'\ (49) 

Equation (48) is identical with Eq. (18). In par
ticular, this leads to the result that the thickness 
of the transition sheath is 

6 ~ (mc/4rte2n0 ) [I + Vft8('. 

The quantity 6 is of the order of electron Larmor 
radius in the field H0 computed for the mean en
ergy of the ions and electrons. 

Similar conclusions can be obtained for a 
sheath of the type considered in Sec. 2C. Here, 
when neutrality obtains the thickness of the sheath 
is of the order of the electron Larmor radius. 

With a Maxwellian distribution the boundary be
tween the plasma and the field, as before, will be 
of the order of the electron Larmor radius, but 
the actual pattern of the transition sheath cannot 
be expressed in simple analytic form. 
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