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The magnetohydrodynamic equations are considered for a plasma without collisions. Dissi
pation due to the absorption of magnetohydrodynamic and magneto-acoustic waves by elec
trons is taken into account. The resultant equations are applied in the analysis of the 
smearing out of a packet in the plasma. It is shown that under the conditions assumed, when 
the spatial dimensions considerably exceed the Debye and Larmor ranges, stationary shock 
waves with a width much smaller than the mean free path cannot exist. 

INTRODUCTION 

IN the description of processes in rarefied plasma, 
when the mean free path is large in comparison 
with all characteristic dimensions, frequent use is 
made of the equations of magnetohydrodynamics. 
It can be shown that such a mode of description of 
the plasma without collisions, as was shown, for 
example, in the work of Ginzburg, 1 can be com
pletely justified for problems in which the thermal 
motions of the particles of the plasma is unimpor
tant. Under conditions in which the thermal mo
tion becomes important, the kinetic approach is 
usually employed, which is based on the utilization 
of the kinetic equation and self-consistent interac
tion. 2 Such an approach is obviously incomparably 
more difficult than the hydrodynamic one. There
fore, in a number of researches,3•4 attempts were 
made, on the basis of kinetic considerations, to 
develop the possibilities of application of magneto
hydrodynamics to a plasma without collisions. In 
this case, it was shown that the hydrodynamic de
scription is not possible in the general case; 
therefore, use of the kinetic consideration is nec
essary. On the other hand, the possibility of ap
plication of magnetohydrodynamics to the special 
problem of plasma remains, and, for example, in 
the work of Chew, Goldberger and Low ( CGL), 3 

hydrodynamics is considered for the case in which 
the dissipation effects can be entirely neglected. 

The value of the absorption of sound or mag
neto-acoustic and magnetohydrodynamic waves in 
the plasma can serve as a measure of the dissipa
tion processes. In an isothermal plasma, sound 
waves cannot propagate. 7 Accordingly, weakly 
attenuated magnetohydrodynamic waves can exist 

in an isothermal plasma only for rather large 
fields, when the role of thermal motion of the par
ticles reduces to a small correction. 8 On the con
trary, in the case of a non-isothermal plasma, 
when the temperature of the electrons is signifi
cantly greater than the temperature of the ions, 
the acoustic vibrations are shown to be weakly 
damped.9 In such an isothermal plasma there are 
in the corresponding case weakly damped magneto
acoustic waves even in the case of fields for which 
the magnetic pressure is comparable with the pres
sure brought about by the thermal motion of the 
particles of the plasma [see references 10 - 12, 
and especially reference 13]. 

In the present article we consider the magneto
hydrodynamic approximation for a plasma without 
collisions under the condition that the temperature 
of the electrons is much greater than the tempera
ture of the ions. In the first section, a derivation 
is given in the linear approximation of the equations 
of magnetohydrodynamics for such a nonisothermal 
plasma, with account of dissipative processes. 
Dissipation in a plasma without collisions is 
caused by absorption of waves originating in the 
plasma by the charged particles.14 Because of the 
fact that the thermal velocity of the electrons in 
our problem is large in comparison with the veloc
ity of the magneto-acoustic waves, the dissipative 
terms in the hydrodynamic equations that we have 
obtained are non-localized in space. 

In the second section, the system of hydrody
namic equations that has been derived is used for 
the investigation of the law of spreading out of the 
wave packet (discontinuity of small intensity ) in 
a plasma without collisions. In this case, in con
trast with the usual hydrodynamics where the 

852 



MAGNETOHYDRODYNAMICS FOR NONISOTHERMAL PLASMA 853 

width of such a discontinuity increases as the 
square root of the time, the width in a plasma 
without collisions is shown to be proportional to 
the time. The third section is devoted to the 
problem of the possibility of existence of stationary 
discontinuities (shock waves) in a plasma without 
collisions. Since the dissipative effects are taken 
into account only in the linear approximation, the 
problem, strictly speaking, is one of shock waves 
of low intensity. The nondissipative terms of the 
equations of magnetohydrodynamics are obtained 
in the nonlinear approximation. 

1. THE EQUATIONS OF MAGNETOHYDRODY
NAMICS FOR A NONISOTHERMAL PLASMA 
WITHOUT COLLISIONS, WITH ACCOUNT OF 
THE THERMAL MOTION OF THE ELECTRONS 

In the frequently encountered case of noniso
thermal plasma of electron temperature much 
higher than the ion temperature, one can neglect 
the thermal motion of the ions in a wide range of 
problems. Furthermore, neglecting collisions, 
we can use for description of the ions the equation 
of continuity 

a plat + div r v = o (1.1) 

as well as Newton's equation 

2 ~~=?a~ +p(V %r)V=q,{E++[VBJ}. (1.2)* 

Here p = mass density, qi = charge density of the 
ions, V ( r, t) determines the distribution of ve
locity of the ions; finally, E and B are the inten
sities of the electric and magnetic fields. 

The thermal velocities of the electrons are not 
small. Therefore it is necessary to make use of 
the kinetic equation for the electrons. For elec
trons of a plasma without collisions, we have the 
following kinetic equation with self-consistent 
field: 

?]_ --L a_t_ --L {E --L _1_ [ B]} !!J. - 0 at ' v ar ' e 1 c v ap - · (1.3) 

Magnetohydrodynamics holds only for low fre
quencies in comparison with the Larmor frequency 
of the ions. In this case, the question is one of 
the frequencies in a system of coordinates con
nected with the ions. Then, rewriting Eq. (1.2) in 
the form 

E =-_!_[VB] I ~ dV 
c 1 ei dt ' 

where M =mass and ei =charge of the ions, we 
can show that the last term of the right side is of 
the order of the ratio of the change of the charac-

*(VB] = v X B. 

teristic frequency to the Larmor frequency of the 
ions in comparison with the first term. If we 
neglect terms of such an order of smallness, we 
have 

E =-[VB] (c. (1.4) 

Substituting such an expression for the field in the 
equation c curl E = - 8Bj8t, we get 

aB;at=rot[VBJ. (I)* 

Equation (I) corresponds to that usually employed 
in the magnetohydrodynamics of an ideal liquid. 
Neglect of collisions makes the conductivity ac
tually infinite in our case. The second equation 
of magnetohydrodynamics is not needed in the 
derivation: this is 

div B = 0. (II) 

Furthermore, assuming the plasma to be suf
ficiently dense, so that the Langmuir frequency 
can be taken to be many times the frequencies 
considered, we can neglect the displacement cur
rent in the field equations, which then take the 
form 

j = (c /4n) rot B, q =0. (1.5) 

Here j = current density and q = charge density 
of the plasma: 

q = q, + e ~ fdp. (1.6) 

We note that when we neglect the thermal mo
tion of the electrons, we can use for their descrip
tion an equation which is similar to (1.2). In this 
case, the equation of motion of the liquid can im
mediately be obtained in the form 

pdV I dt =- (4nf1 [B, rot B]. (1. 7) 

For the problem in which we are interested 
-namely, of obtaining a magnetohydrodynamic 
theory that takes into account the thermal motion 
of the electrons, it is necessary to determine the 
electric field by means of Eqs. (1. 3) and (1. 5), and 
to eliminate it from Eq. (1.2). We thereby obtain 
for the liquid (plasma) an equation of motion 
which takes into account the effects produced by 
the thermal motion of the electrons, and therefore 
generalizes Eq. (1. 7). 

We note that the desired equation for the elec
tric field should really be computed with account 
of terms of the next order of smallness in com
parison with those kept in Eq. (1.4). Below, we 
shall limit ourselves to obtaining an equation of 
motion of the liquid only for the case of plasma 
states which are slightly different from the ground 
state. 

*rot= curl 
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In the system of reference in which there is no 
constant drift of the electrons, we shall take for 
the distribution function of the ground state the 
Maxwellian distribution:* 

fo (p) = N, (2JtmxT)-'1' exp {- p2/2mxT}. (1.8) 

We can then write the equation for the non-equili
brium contribution Of to the electron distribution 
function: 

aN _:__ aot _ _,_ _e__ [ 8 1 aot _ _ E a to 
at 1 v ar ' c v 0 ap - e ap ' (1.9) 

The solution of this equation has the form 

With the aid of Eq. (1.12), and also by bearing 
in mind Eq. (1.5), we find the following expression 
for the electric field: 

·N-E(r t) -- 1 r·(e)B l 2aop I F(diss) e, I ' .. -(;- J 0 - Vs dr ' ' (1.14) 

where op is the non-equilibrium contribution to 
the mass density and 

(diss) PoV; {[ ( () ) . [ f a ]] J 1 ( a ) Fa = 8~ Bo, _Boar;-:- BolBoa;:: a 8~ ,Boar BoP 

- [ Bo [so a~ Jl a~J ~ dr'Q (r- r') V.B (r', t). (1.15) 

t Here 
~f(p,r,t)= ~ dt'~dr'E(r't')<I>(r-r', t-t',p),(1.10) 

--co 

where 

<l> (r, t p) = f (Ji) _e - _1_ c\· dkeikr JBo (pBo) _l_pBol sin 0 t 
' 0 mr.T (2n)" l 32 B0 --e 

' 0 

fBo fpBolJ Q } . f "k (PBo] [ ] 
- 2 cos .,t exp 1 t ,~8- I- cos Ret 

B0 l 111"•e n 

(1.11) 

Here rle = eB0 /me is the Larmor frequency of 
the electrons. Under the assumption that w is 
small in comparison with the Larmor frequency 
and wjk is small in comparison with the thermal 
velocity of the electrons, we have the following 
expression for the Fourier components of the cur
rent density of the electrons: 

~ ( ~ 2 j' ((I) k) = _ i .....2': ~ Bo BoE) _ .....2': Bo [Ek] --i--- 't WOi {w2 B0 (B0E) 
' 4n v~ (kBo)2 4n D1 (kBo) ' 4n v~ (kB0 ) 2 

. .L iw Bo ([Bok] E)_ iw (Bok] (BoE) _:__ 2 ~L (kBo] ([k_J!~]__Il} 
, oi (kBo) Bo n,. (kBo) B, I n; B~ . 

( 1.12) 

Here Qi = eiBo/Mc is the Larmor frequency of 
the ions, Woi =--/ 47l"ei2Ni/M is the Langmuir fre
quency of the ions, Vs = --/!ei/e I (KT/M) and, 
finally, 

(k) r d { xT (kB0)2 • . } -. j'"itfil B0 
-r = j t exp -2m B; t-- rwt ~ V 2 xT I kBo I · 

0 (1.13) 

To obtain the relation (1.12), account was taken of 
the fact that the total charge of the plasma van
ishes: eiNi + eNe = 0. We note that because of the 
assumptions we have made, the component of the 
right side of (1.12), which is proportional to T(k), 
is shown to be small. 

*Frequently, distributions with different temperatures are 
taken parallel to and transverse to the constant magnetic field. 
In this case, such a state can generally be unstable.",15 We 
take this opportunity to thank Kitsenko and Stepanov for making 
their work15 available to us before publication. 

Q (r) = (2~)" ~ eikr dk-r (k). ( 1.16) 

Substituting (1.13) in (1.2), and taking into consid
eration the first of Eqs. (1.5), we get the desired 
equation of motion of the material: 

dV = _1_ [rot B, Bo]- v~ _!}__ op + ___!__ p(diss) 
dt 4np0 dr p0 p0 

(Til) 

Without account of the dissipative force F(diss), 
Eq. (III) corresponds to the equation of motion of 
an ideal liquid in magnetohydrodynamics with an 
isotropic pressure tensor (see reference 3). 

The dissipative force in Eq. (III) has essentially 
a nonhydrodynamic form. Actually, the presence 
of F(diss) makes (III) an integral equation. The 
situation here is quite similar to that which takes 
place in an analysis of sound absorption in metals 
when the electronic mean free path is much 
greater than the acoustic wavelength and the spa
tial dispersion of the tensor of the elastic moduli 
becomes appreciable. 16 Such a peculiarity of the 
dissipative force is brought about by the fact that 
the processes of absorption in the plasma which is 
under analysis are brought about not by the Colli
sions of particles with one another, but by radia
tion ( Cerenkov or bremsstrahlung) and absorp
tion of waves in the plasma by electrons. 

In the case in which the gradients are parallel 
to the constant magnetic field B0, Eq. (III) goes 
over into the equation of motion of the material in 
the absence of a field: 

rz =- :: ~o: + v; a~ ~dr' Qo (r- r') div v (r',t). (1.17) 

Here Q0 is determined by Eq. (1.16) with replace
ment of the quantity I k • B0 I/B0 by I k I in T(k ). 

The kernel Q ( r) , or Q0 ( r) in the absence of 
a magnetic field, decreases slowly with increase 
in r. This is associated with the fact that T ( k) 
has a singularity at k = 0. The appearance of this 
singularity is connected with the fact that in our 
consideration the characteristic dimensions of the 



MAGNETOHYDRODY NAMICS FOR NONISOTH ERMAL PLASMA 855 

spatial inhomogeneities of the particle distribution 
are taken to be small in comparison with the mean 
free path. In particular, this applies fully to the 
kernels Q and Q0• 

If we were interested in values of r comparable 
with or larger than the mean free path, then we 
could use the expression 

co 

\ { x T (kB0) 2 2 } -r1 (k) = } dt exp - :!.m Eo t - vt ( 1.18) 
0 

for estimates in this case, in place of (1.13). Here 
v is the electron collision frequency (variation in 
the frequency w is neglected). In contrast to 
T(k), which increases without limit as k- 0, the 
expression for T 1 ( k) increases only to such a 
point that kl > 1, where l = v- 1..; KT jm is the mean 
free path. In the case in which kZ « 1, the func
tion T 1 becomes constant and is equal to 1/v. 
Therefore, we can use the following simple formula 
[which approximates T1 (k )] for an estimate of 
the role of collisions: 

(1.19) 

Such an expression can also serve, if the necessity 
arises, for the analysis of the singularity of the 
function T at k = 0. 

Such a simple approximation for Eq. (1.17) 
leads to the following expression for the kernel: 

1 ym d -Qo (r) = --,1- -T d- Ko (r/ l), 
(21t) ' x r 

(1.20) 

where l = Z.../ 2/7r and K0 is the MacDonald func
tion. For the one-dimensional case, in which v 
does not depend on the coordinates y and z, but 
only on x and t, it is necessary to integrate the 
kernel (1.16) over y and z. In this case, we get 

- ~ jfi!" Bo ( x Bo ') 
Q (x) = Jl 2nxT I B0x I Ko T I Box I · (1.21) 

2. SPREADING OUT OF THE WAVE PACKET 

We shall use the equations of magnetohydrody
namies which were obtained in the previous sec
tion for the analysis of the problem of the spread
ing out of the wave packet, with the purpose of 
applying these results to the dissipation of low
intensity shocks in a plasma. 

We begin our consideration with the case of a 
plasma without a constant magnetic field. We then 
have, by Eqs. (1.1) and (1.17): 

il26p 2 ,. 2 \ d , Q ( ') i16p (r') 
(f£2 = v, ~up + v, ~ .\ r o r - r - 0-1 - · (2.1) 

Assuming that the values of op and its time de
rivative are given at the time t = 0, we get, in the 
one-dimensional case, 

[ 
2v,t + x' -x 

-:- 0 P (O, x') (v,w/)2 + (V/ + x'- x)" 

2v,t-x'+x ]} 
+ (v5wi) 2 + (v,t- x' + x)2 ' 

v,t + u 
A (u) = arctg --1- , 

v.w 
-./ nlm 

W= Jl SM' Z = /e;f e [. (2.2)* 

Let 86p/8t = 0 at the initial instant of time, and 
let op be different from zero and constant in 
x 1 < x < x 2• Then 

6p (0) { o p (t, x) = 211 A (x2- x) -A (x1- x) 

+A (x-x2) -A (x- X1) 

.!!:'._ [(v,w/) 2 + (v,t + x2 - x)"] [(v,wt) 2 + (v,t- x1 + x)2]} 

+ 2 In [(v,wt) 2 + (v5t- x2 + x)2] [(v,wt) 2 + (v,t + x1 - x)2] • 

(2.3) 

It is then clear that the packet spreads out accord
ing to a linear law. That is, the width of the packet 
is proportional to the time. The spreading rate is 
equal to wv s· The latter quantity is none other 
than the ratio of the damping decrement of a sound 
wave in a plasma without collisions to the wave 
vector. Neglecting the small term proportional to 
w in (2.3), we can show that the shape of the packet 
is determined by a combination of arctangents of 
the form A (~x ). 

The same analysis for the case of a plasma in 
a constant magnetic field (without account of small 
terms ~ w) leads to a similar shape for the 
spreading packets, with only this difference that 
the velocity of magnetohydrodynamic waves 

v; = } {(v~ + v3t) ± [(v~ + v3t)2 - 4v3tv~ cos2 a]'h} (2.4) 

replaces vs (here, v~ = Bg/47rp0 is the Alfven 
velocity and a is the angle between the constant 
magnetic field and the x axis), and also 

w+=~z{l±V(~os2a-y)cos2a} 1 
- 1 + y2 - 2y cos 2a I cos a I ' 

(2.5) 

appears in place of w. 
The quantity w± is the ratio of the damping de

crement of the magnetoacoustic wave to the fre
quency (see reference 13). Knowledge of the decay 
law of the packet in ordinary magnetohydrodynamics 
of liquids makes it possible to determine the width 
of the weak shock wave (see reference 17). t In 
this situation, a stationary discontinuity can arise 

*arctg = tan-'. 
tWe take this opportunity to thank E. P. Sirotina and S. I. 

Syrovatskii who acquainted us with their research prior to its 
publication, 
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only when the rate of spreading out of the jump is 
comparable with the rate of overflow. The latter 
does not depend on the width of the jump and is de
termined by the properties of the medium before 
and after the discontinuity. On the other hand, the 
rate of smearing out in ordinary hydrodynamics 
is determined by the width of the discontinuity (it 
is inversely proportional to the width), which 
allows us to find the value of the stationary width. 
In our case of magnetohydrodynamics of a plasma 
without collisions, the rate of spreading out does 
not depend on the width of the packet (at least, 
from the point where it is small in comparison 
with the mean free path). Therefore, the equality 
of the rate of overflow with the rate of spreading 
out, on the one hand, does not determine the width 
of the shock and, on the other hand, it is possible 
only for a single, completely determined rate of 
overflow. Consequently, if the stationary shock 
wave is possible, it is only in the case in which 
the rate of overflow is equal to w±v±. The possi
bility of the existence of a stationary discontinuity 
in this case is doubtful, inasmuch as an arbitrary 
shock width remains. However, for sufficiently 
long development, the discontinuity becomes wider 
than the mean free path. In this case, as is shown 
in ordinary hydrodynamics, conditions arise under 
which the discontinuity can become stationary. 
The next section is devoted to the problem of the 
possibility of existence of stationary discontinui
ties with a width less than the mean free path. 

3. SHOCK WAVES IN A PLASMA 

For the investigation of shock waves in a plasma, 
one must start from equations which take nonlinear 
effects into account. Therefore, the problem 
arises of the derivation of the nonlinear equations 
of magnetohydrodynamics. We shall find such 
equations for the conditions in which the dissipa
tion terms can be considered small. Such a situa
tion essentially obtains in ordinary hydrodynamics 
as well. As in the previous section, we first con
sider the case of no external magnetic field. 

The equations of magnetohydrodynamics ob
tained in Sec. 1 hold under the conditions that the 
phase velocity of the wave processes in the plasma 
is much less than the thermal velocity of the elec
trons ( w/k « ...; KT /m ), By w we mean here the 
frequency in the system of coordinates attached 
to the ions. As a result, in the derivation of the 
equations of hydrodynamics for a plasma without 
account of dissipative processes, we can neglect 
8f/8t in the kinetic equation for the electrons. 
Thus, for B0 = 0, the initial kinetic equation for 

the electrons is written in the form 

vaf/ar + eE atJap = 0. (3.1) 

Denoting the electric potential by cp ( r, t) and the 
drift velocity of the electrons by Ve ( r, t) = je/qe, 
we attempt to satisfy Eq. (3.1) by a solution of the 
form 

f = F (eqJ (r, t) + m (v- V,) 2/2). 

Here F is an arbitrary function. In a special case, 
for example, the function f is the Maxwell-Boltz
mann distribution. 

We now find the connection between E = - '\lcp 
and the density p, for which such a solution satis
fies Eq. (3.1). For this purpose, we multiply Eq. 
(3.1) by v and integrate over p. As a result, we 
get the equation for the transfer of momentum of 
the electrons 

(3.2) 

Making use of the given expression for the solution 
of Eq. (3.1), we get 

~ Vkvzfdp = q; {bkt X:+ V,nVer}, 

where 

q,=e~fdp, q; X:= ~(v-V,)2 fdp. (3.3) 

Substituting Eq. (3.3) in (3.2) and using the equation 
of continuity, we obtain 

' av ek a mq, \-et-a-+ -a (xTq,) = eq,Ek. (3.4) 
rt rk 

By a comparison of Eq. (3.4) with Eq. (1.2), we 
see that in the computation of the intensity of the 
electric field, we can neglect the first term on the 
left side of Eq. (3.4) because of the smallness of 
the ratio m/M. As a result, when the velocity V e 
is much smaller than the thermal velocity of the 
electrons, we obtain the following expression for 
E: 

1 a E ~~--a (xTq,). 
eq, r 

This relation also determines the desired connec
tion among E, p, T, for which the solution 
selected above satisfies Eq. (3.1). Therefore, 
such a relation, consistent with the definition of T, 
is an equation of state. 

If the characteristic dimension of the inhomoge
neity is much larger than the Debye radius, then 
p = I ei/e I qe. As a result, we get the following 
set of hydrodynamic equations without account of 
dissipative processes (see reference 18): 

ap a ar + ar (pV) = o, av · (v~)v =- ~~(xT ). at -T ar Mp ar p 
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This set of equations is closed if the temperature 
of the electrons is given. With account of dissipa
tive terms in the case of a constant temperature, 
the set of hydrodynamic equations takes the form 

av 
at 

a,) a 
(ff · a;:-(PV) = 0, 

(v~) v =- v~ ~ 
' ar p ar 

-lv;! ~dr'Qo (r- r') div V (r', t). (3.5) 

Here v s is the sound velocity. The expression 
for the kernel Q0 with account of the finite size of 
the mean free path is determined by Eq. (1.20). 

To study the possibility of existence of shock 
waves in the plasma, it suffices to consider Eqs. 
(3.5) in the one-dimensional case. We introduce a 
set of coordinates connected with the surface of 
discontinuity, and direct the x axis perpendicular 
to this surface. Making use of Eq. (3.5), we write 
down the equations of continuity of matter flux and 
momentum flux on the surface of discontinuity: 

{pV} = 0, (3.6) 

+oo 
r v· ' 2 a \ K (I X- x' I) dV (x') d '} lp ---t- PVs-nVsPo ~ o --1- ~ X =0, (3.7) 

-00 

where a = v' 7lll1V~/2KT. Further, taking pV = j 0 

= const, and eliminating p from (3. 7), we write 
the condition for the discontinuity of the momentum 
density in the form of an integral equation 

(v + vJ) j0 - : VsPo +f Ko (I x -/ 1) d~.~~') dx' =C. (3.8) 
-00 

Now we introduce a new constant V and write C 
in the form v- + v~/V-. In this case, the integral 
equation (3.8) takes the form 

+oo 
(V -V-) -+v~ (_!_- ~)=!!._ VsPo (' Ko (1 x- x' 1 )' dV (x' )dx'. 

V V Jt __:~ I dx' (3•9) 

The integral equation (3.9) is satisfied by definite 
constant values of the velocity V. In this case we 
get from Eq. (3.9) 

(V- V-) + v; (1/V- l!V-) = 0, 

whence follow the two constant values 

v = v-, V = V~!V- = V+. 

Both values are the same only if v- = vs. 

(3.10) 

(3.11) 

For an answer to the question of the existence 
of shock waves in the plasma, we must consider 
the possibility of such a solution of Eq. (3.9) which 
takes on the values v+' v- for v+ ~ v-, as 
x- ± ""· It follows from Eq. (3.9) that such a 
solution exists if a transition from v- to v+ takes 

place such that V ( x) changes little over distances 
of the order of the mean free path. Actually, we 
can take dV /dx out from under the integral sign 
in Eq. (3.9) in this case, and the integral equation 
reduces in first approximation to the differential 
equation 

V- v- + v2 ( _!- __!__) '= al V:Po dV. 
s ' v v-' lo dx 

(3.12) 

It is well known that Eq. (3.12) has a solution which 
takes on the values v+' v- as X- ± ""· For the 
solution to be stable here, the conditions v- > V s 
and v+ < V s must be satisfied. The width of the 
transition region is determined by_ the mean free 
path. Thus, this case is analogous to that consid
ered in ordinary gas dynamics (for the approxi
mation that we have employed). 

It follows from Eq. (3.9) that a stationary shock 
wave cannot exist in a plasma in which the transi
tion from v- to v+ takes place at distances much 
less than the wavelength. Actually, in this case, if 
we assume that the transition from v- to v+ takes 
place near x0, the equation can be written approx
imately in the form 

V -- v- + v; ( f - ~-) = (V- - v+) a;~· K ( I x-; xo j ) . 

(3.13) 

Since the correct form of Eq. (3.13) differs from 
zero when x - x0 ~ l, it then follows that the as
sumption made in obtaining Eq. (3.13) is not vali
dated. Thus, stationary shock waves cannot exist 
in a plasma of width much less than the mean free 
path. Of course, it does not follow from this that 
no shock waves can in general exist in a plasma 
with a width less than the mean free path. Such 
shock waves can exist in the plasma, but they are 
not stationary. 

We now consider the case in which the plasma 
is located in an external magnetic field. Here 
again the problem arises of obtaining the nonlinear 
equations under the condition that the dissipation 
be small. Since the expressions for the dissipative 
terms in the linear approximation are already 
known, it remains only to establish the form of the 
equations of magnetohydrodynamics without ac
count of dissipative processes. In place of Eq. 
(3.1), we now have the equation 

(3.14) 

Limiting ourselves here to the case of an isotropic 
velocity distribution, we seek a solution of Eq. 
(3.14) also in the form of (3.2). In order to find 
an expression for E, we proceed as in the case 
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V = 0. In place of Eq. (3.4), we now have the equa
tion 

m (v, aa) Ve = eE + _!_ da (qe'x.T) + _!___ [V,BJ, (3.15) 
r q, r c 

whence we find 
t a e 

eE~---a (qe'x.T}--[V,B]. 
qe r c 

(3.16) 

Substituting this expression in Eq. (1.2), and taking 
it into account that je = qe Ve and qe = I e/ei I p, 
we obtain the equation of motion in the nonlinear 
approximation, but without account of dissipative 
terms. If we add the expression for p(diss) to 
this equation (which is computed in the linear ap
proximation), we get the desired set of equations 
for T = const: 

~~ + div pV = 0, 

av ( a ) u; afl 1 f (diss) 
(f[ + v arl v =- -ar +Imp [rotB, BJ + --

P p (3.17) 

The value of p(diss) is determined by Eq. (1.15). 
Without the term p(diss), Eq. (3.17) is identical 
with the equation of magnetohydrodynamics for an 
ideal liquid, if we take the equation of state to be 
p = v~p. We now proceed to the problem of the 
possibility of existence of shock waves in the 
plasma in the presence of a magnetic field. As 
above in the study of shock waves, the unit vector 
n is perpendicular to the surface of discontinuity. 
We consider the continuity condition on the discon
tinuity surface. In order to write down the con
tinuity relation for the momentum flux vector, we 
write out the expression for p(diss) in the form 
of the divergence of the tensor :rrcgJss). Employing 

Eq. (1.14), we obtain the following expression for 
.f~~ss): 

liL(diss)_ av p 
.J aj> - s 0 

{2babl> (b a~) (bL) -bl> 0~a (bL) -babll (! L) +a~ a L13}, 
(3.18) 

where 

L = ~ Q (r- r') V (r') dr', 

The expression for the momentum flux vector has 
the form 

1ta = (pVaVIl + p[Ja~)n~- 4~ [BaBp-+B2ba~]nll-.'fa(jnjl. 
(3.19) 

It follows from Eq. (3.19) that the continuity condi
tion for the components of the momentum flux vec
tor on the surface of discontinuity, and the corre
sponding integral equations, will contain integral 

terms of the same type as in Eq. (3.10). There
fore, solutions here which describe stationary 
shock waves in a plasma, with a width much less 
than the mean free path, are shown to be impos
sible. 

The conditions should again be noted for which 
the results given in the present paper are valid. 

a) Conditions are considered for which the 
collisions are unimportant. The mean free path 
is assumed to be infinitely large. 

b) The plasma is assumed to be strongly non
isothermal, which gives grounds for neglecting the 
thermal motion of the ions. Account of the thermal 
motion of the ions does not change the essentials 
of the results. 

c) Significant changes in the functions p, V, B 
take place over distances much greater than the 
Debye radius, the Larmor radius and c/wL· 

To conclude the paper, we make a brief com
parison of the equations of magnetohydrodynamics 
obtained here for a plasma with the results of 
CGL3; these latter results were established on the 
basis of many investigations devoted to the mag
netohydrodynamic theory of plasma. It should be 
noted here that the chief assumption of this work 
on the perpendicularity of the electric field and 
the magnetic induction in a plasma without colli
sions is actually not satisfied [as is seen from 
Eq. (1.14), and also (3.16}). In particular, this 
leads to a violation of the adiabatic equations of 
CGL. Moreover, it must be noted that only the 
correct account of the longitudinal field arising in 
the plasma (a field which violates the basic as
sumption of CGL) leads to the true spectrum of 
magnetohydrodynamic waves (2.4} (see also ref
erence 13). 

Finally, we note that in a comparison of the 
present work with the results of CGL, it must be 
kept in mind that we have limited ourselves to a 
consideration of a strongly nonisothermal plasma, 
in which the temperature of the ions can be set 
equal to zero. 
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