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The amplitudes for the scattering of charged pions by charged pions are expressed by means 
of the Mandelstam representation in terms of the spectral functions. A set of equations is 
derived for the one-dimensional and two-dimensional spectral functions. One of the methods 
for obtaining an approximate solution is discussed. 

1. INTRODUCTION 

ONE of the authors (Ter-Martirosyan) has re­
cently proposed a method for constructing a sym­
metric system of equations for the spectral func­
tions for the two-particle transition amplitude. 
The method was based on Mandelstam's equations 1 

for the two-dimensional spectral functions. The 
equations were given both in general form, 2 and 
for a number of simple cases3 involving the inter­
actions of neutral particles. The resultant system 
of equations involves only experimentally observ­
able quantities (i.e., in ttie language of old theory, 
renormalized quantities) and the parameters that 
appear are the particle masses and the usual 
coupling constants (for example the constant g 
for the meson-nucleon interaction, the constant A. 
for the pion-pion interaction). The theory requires 
no other parameters and, furthermore, no diver­
gences appear in this formulation. 

When the two-particle transition amplitude (in 
all three channels) is expanded in Legendre poly­
nomials the system of equations for the spectral 
functions is transformed into an infinite system of 
coupled equations4 for partial amplitudes, of the 
same type as those considered by Chew and 
Mandelstam5 and Cini and Fubini. 6 However, when 
this is done divergences appear (as noted by 
Efremov et al. 7 ), whose degree increases with in­
creasing number of partial waves taken into 
account in the equations. These divergences are 
a simple consequence of an illegitimate use of the 
Legendre expansion in a region ( substantial in the 
equations) in which it fails to converge. In the 
original equations for the two-dimensional spectral 
functions these divergences do not appear. There­
fore in the solution of our equations one should 
make use of some method other than the expansion 
in Legendre polynomials, for example the method 

of partial iteration of the equations for the spectral 
functions Aij ( s ) described previously, 2 •3 provided 
of course that convergent results are obtained. 

In this note we obtain equations for the one­
and two-dimensional spectral functions for the 
interaction of charged pions with each other. We 
use throughout the same notation as was intro­
duced previously (see Mandelstam 1 and 
Ter-Martirosyan2 ). 

2. DERIVATION OF THE EQUATIONS 

The amplitude describing the interaction of 
charged pions may be expressed as follows 

Actll-,s(Sl, S2, sa) = ').. (s1, s2; sa)<la-,Oflo + ').. (ss, s2; S1) 6a.fl<l-,r, 

(1) 

where A. ( s 1> s2; s 3 ) =A. ( s2, s 1; s 3 ) is a function of 
the invariants 

Sl = (pl + P2)2, S2 = (pl + P4)2, 

Sa= (pl + ps)2, Sl + S2+Sa=4fl 2, 

and (pta), (p2J3 ), (PaY) and (p4o) are the mo­
menta and isospin indices of the four pions. 
(Fig. 1). 

The Mandelstam representation for the function 
A., when written with one subtraction, has the form 
[see Eq. (4) of Ter-Martirosyan3 ] 

00 

').. (s1, s2; sa)= 'Ao +! ~ {a(a) [cp (a, s1) +cp (a, S2)l 
0 

00 

-t- ~(a) cp (a, ss)}da + ~. ~~ {Pc(a, a') cp (a, St) cp (a', s2) 
0 

+ p (a, a')[cp (a', s1) + cp (a',s2)l cp(a, sa)} dada', (2) 

where 

1 1 4!12 
cp (a s) = ----- So= - 3 , 'Ao =')..(So, so, So), 

'. 'J~S :J-So' 

Pc(a, a') = Pc (a', a). 
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FIG. 1 

The equations for the spectral functions a ( u), 
f3 (u) and pc, p follow (see Ter-Martirosyan2 ) 

directly from Eq. (2) and the unitarity conditions, 
when the latter are written out for the invariant 
function A.. This can be done by, for example, 
making use of the relation determining the 71"71" 

scattering amplitude a (I) in states with pre­
scribed isospin I. 

For transitions in the first channel we have 

ct<nl ~: 3A. (sa, s2; s1) +A. (st, s2; sa) +A. (s1, sa; s2), 

ct<11 ~~ A. (s1, s2; sa) -A. (s1, sa; S2), 
:t-<2 1 = A. (s1, s2; sa) +A. (s1, sa; s2). (3) 

From the three unitarity conditions for the am­
plitudes a (I) it is easy to obtain two relations 
for the absorptive parts 11. 1 and 11.3 of the amplitude 
A in the first and third channel: 

• ' , , , dn 
+ A. (st. sa; s2) A. (st. s3 ; s2)} 4n + tit (sh s2; s3), 

As (s3 , s2 ; st) = V 51 --;1
411-' ~ {31.. • (s~, s~; s1) A. (s~, s;; St) 

+ 1..• (s~. s;; St) !A. (s1 , s;; s;) + A. (s~> s;; s;) I 

+ A(s;, s;;s1) [A,• (st. s~; s~) + 1..• (st. s~; s;) ]} 

+ ti 3 (s3 , s.; St). (4) 

Here D. 1 and D.3 refer to the contributions from 
states containing more than two mesons (i.e. 
from four-, six-, etc., meson states). The D.i 
are symmetric functions of their first two argu­
ments, i.e. b.i (St. s 2; s3) = D.i( s 2, s 1; s3 ). We use 
the normalization of Chew and Mandelstam, 5 so 
that du/dO = [4s1112A[ 2• 

As far as its symmetry properties are con­
cerned the amplitude A is of precisely the type 
for which equations for the spectral functions were 
formulated by Ter-Martirosyan,3 Sec. 2. We may 
therefore make direct use of those results.3 At 
the same time we give, for convenience of the 
reader, a different derivation of these equations 
in Appendix 1, making use of the unitarity condi­
tions and spectral representations directly for the 
functions a (I) (s 1, s2; s3). 

In this way one obtains from Eq. (2) of this work 
and Eqs. (10) and (11) of Ter-Martirosyan3 the re­
sult 

where 

p (s', s) = Qt (s', s) + Qa(s, s'). 

?c (s, s') = Q2 (s. s') + Q2 (s', s), 

Qt (s', s) = ; 2 ~~ r (a', a"; s', s) {A.; (a') A- 2 (a") 

+ t..;(a') A.3 (a')} da' da", 

Q2 (s', s) = ;. ~~r (a', a"; s' ,s) {A.; (a') A.3 (a") 

+ t..; (a') A. 2 (a")} da' da", 

Qa (s', s) = ; 2 ~~ r (a', a"; s', s) {3A.; (a') A.t( a") 

(5) 

+ 2Re A.~ (a') [A.2 (a") + A.3 (a")]} da' M'. (6) 

The arguments of the absorptive parts have the 
following values 

A-1 (a) = A.1 (a, 4[!.2 - s-a; s), 

A.2 (a) = A.2 (s, a; 4[!.2 - s-a}, 

A.a (a) = A.a (s, 4[!.2 - s-a; a), 

and the function r stands for the spectral func­
tion of the box diagram shown in Fig. 2 [see the 
equation following Eq. (18) of Ter-Martirosyan3 ]: 

r (a'' a"; s'' s) = 2ns-'lt {(s- 4[!.2) s'2 

- 2s' [(s- 4[!.2) (a' +a') + 2a' a") 

+ (s- 4[!.2)#'(a' - a")2 }-•;, !l (s' - Sc), 

5 = a' + a" + ~2cr'cr" 
c s-411" 

+ {(a' +a"+ s~·~:. r- (a'- a")2r' 
!l (x) = f 01, X> 0 

I , x<O' 

t *-£ 
FIG. 2 

(7) 

With the help of Eq. (2) the functions Ai ( u) may 
be expressed in terms of a, /3, p, Pc= 

()() 

A.t (a)= ex (a) +! ~ [p (T, a) qJ (T, s) 
0 

+ Pc (a, T) qJ (T, 4[!.2 - s-a)] dT, 
()() 

A-2 (a)= ex (a)+!~ [p (T, a) qJ(T, 4[!.2- s-a) 
0 

+ Pc ('t', a) IP ('t', s)] dT, 

00 

A.s (a) = ~(a) + ! ~ p (a, T) [<p (-r, s) 
0 

(8) 
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Together, Eqs. (5), (6) and (8) relate p and Pc to 
a and {3. 

The remaining two equations [determining the 
functions a ( CT) and {3 ( CT)] are obtained by 
averaging Eq. (4) over the scattering angles. If 
we denote by <A. ( s) >1 and <A. ( s) >3 the ampli­
tudes averaged over the scattering angles of the 
first and third channel respectively, then we obtain 

(1..1 (s) >1 = 2 V(s- 4!12) Is I (A (s) >1l2 , (9) 

(As (s) )a = V (s- 4!12) Is {31 (A (s) )al2 

(10) 

Here the expressions appearing on the left sides 
of Eqs. (9) and (10) can be written as follows [see 
Eq. (9') of Mandelstam 1 ]: 

00 

1 \' (AI (s) )I= ct (s) -1- n \ [ Q1 (a, s) + Q• (a, s)J/ (a, s) da, 
0 (11) 

()() 

(As (s) )a = ~ (s) + ! ~ Qa (a, s) l (a, s) da. (12) 

The function l ( CT, s) has the form2 

l (a, s) = ~4 ,ln (1 -;-" - 1
' 11')- - 1-. 

s- 11 cr cr-so 

In order to find <A. ( s) >1 3 we make use of dis-
' persion relations, following directly from Eq. (2): 

()() ' 

A (Sl, ss; ss) = <I> (s1) + ! ~ [Az (Sl, a) q> (a, s2) 
0 

+ A3 (s1, a) q> (a, sa) I da. 

The functions A.2 ( CT) and A.3 ( CT) are given by 
Eq. (8) and stand for the imaginary parts of the 
amplitude in the second and third channel 
respectively: 

00 

<I> (51) = 4 + ! ~ q> (a, Sl) ex (a) da 
0 

()() 

1 \'\' p (a, a')( So- St) dcr da' 
+no .\.l (a+ a'+ St-411') (a-so) (a' -So)· 

0 

Therefore 
00 

(13) 

(14) 

(A (s) )t = <I> (s) + ! ~ l (a, s) [A• (s, a) + A3 (s, a) I da. 
0 (15) 

Similarly 
00 

A (Sl, sz; sa)= F (sa) + ! ~ At (sa, a) [q> (a, Sl) + q> (a, sz)l da; 
0 (16) 

here A. 1 is determined by Eq. (8) and 
00 

F (s) = Ao + ! ~ ~(a) q> (a, s) da 
0 

1 00 Pc (a, a') (so- s) des des' 
+ n• ~~ (es +a' + St- 411")(a- So)( a'- So) 

0 

(17) 

Hence 
00 

2 \ (A (s) )s = F (s) + n .l A1 (s, a) l (a, s) da. (18) 
0 

3. DISCUSSION 

Together, the four equations (5), (6), (9) and 
(10) determine the four functions a, {3, p and Pc· 
It is natural to try to solve the system of equations 
approximately, ignoring in the first approximation 
the contributions due to the functions p and Pc 
in comparison with the contributions due to a and 
{3. Instead of a and {3 one may introduce the S 
wave scattering amplitudes a~0 > and a~2 > in the 
isospin I= 0 and 2 states respectively. 

A first approximation for p and Pc then follows 
from Eqs. (9) and (10) (with only a and {3 on their 
right hand sides). The expressions for p and Pc 
obtained in this manner are given in Appendix 2. 
Given p and Pc we can obtain corrections to the 
S wave amplitudes, as well as P, D, etc., wave 
amplitudes. The S wave dominant solution found 
by Chew, Mandelstam and Noyes8 is precisely 
characterized by the property that the P and 
higher waves are very small in comparison with 
the S wave. It is therefore clear that the above 
described procedure will lead in essence to the 
Chew, Mandelstam and Noyes solution and will 
differ from it only by corrections from higher 
order approximations. Should it turn out that it is 
the P wave (or any other wave with l > 0) that is 
large then the functions p and Pc cannot be ig­
nored in our equations and it is necessary to solve 
the four equations with p and pc taken into 
account. 

APPENDIX 1 

We present here a derivation of the equations 
for the spectral functions that is different from 
that given by Ter-Martirosyan.3 Let us write 

U> vs1- 4112 \ u>• , , U> " " dn 1 ct1 (s~o Sz, s3)= ---\a (s1, S2, sa) ct (s1, s., s3) -4-
sl oe.' n 

+ l'l.Ul (s1, s2,sa)· (A.1) 

The first term on the right hand side of Eq. (A.1) 
may be expressed in the form 

00 00 

1 \' 1 • 
31 .l Q, (a, Sl) q> (a, sa) da + n ~ Pt(a, Sl) q> (a, 52) da, (A.2) 

0 0 

where 
()() 

Q, (a, S1) = ~2 ~~ f ( T, -c'; a, S1) [a~!)" (-c) ex~/) ( "f') 
0 

+a~!)" (-c) a~l) ( -c') I d"f d-e', 
()() 

Pt(a, S1) = ~2 ~~ f (-c, -c'; a, St) [a~l)• (-c) a~l) (-c') 
II 

(A.3) 
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a~d a~I) denotes the jump in s 2 of the function 
a I) ( s 1, s 2, s 3 ). The arguments of the functions 
a~I) and a~I) are as follows: 

Evaluating on both sides of Eq. (A.1) the jump 
in s 2 we obtain 

:t1;) (st, S2, sa) = P 1 (s2 , S1) +VI (s2, SI); (A.4) 

VI ( s 2, st) = 0 for s 1 :::: 16/L 2• With the help of I 
Eqs. (2) and (3) the functions a ~p, a~I) and a~ ) 
are easily expressed in terms of p and Pc· Then 
Eq. (A.4) for I = 0, 1, 2 takes on the form 

3p (s1, S2) + p (sz, St) -j- Pc (St, sz) = Lo, (A.5) 

- Pc (s1, S2) + p (s2, St) = Lt, 

p (S2, Sl} + Pc (SI, S2) = L2, 

where we have introduced the notation 
00 

L; = ~2 ~ ~ f(T, T'; S2, St) A; (T) A; (t') dT dt' 
0 

--1- V; (S2, SI) (i = l, 2, 3); 

Ao (a) = a~o) (s1, a, 4p.2 - SI -a) = 4a (a) + ~ (a) 
00 

(A.6) 

(A. 7) 

+ + ~ [3 p (a', a) + p (a, a') + Pc (a, a') ]cp (a', s1) da' 
0 

00 ++ ~[3pc(a,a') +p(o',o) 
0 

+ p (a, a')l cp (a', 4p.1 - s1 -a) da', 

At (a) = ai1> (SI, a) = a (a) - ~ (a) 

00 

+ + ~ [ Pc ( o', o)- p (a, a') 1 q> (a', SI) dcr' 
0 

00 

(A.8) 

+~ \ [p (a', a)- p (a, a')l cp (a', 4p.2 - S1- a) du', 
11 0 (A.9) 

A2 (a) = a~2 > (s1, a) =a (a) + ~ (a) 

00 ++ ~ [p(a,a') + Pc(a,a')lcp(a',st)da' 
0 

00 

+ -ft ~ [p (o, a') + p (a', a)l cp (a', 4p.2 - SI- a) da'. 
o (A.10) 

Subtracting Eq. (A.6) from Eq. (A. 7) and making 
use of the symmetry of Pc ( s 1, s 2 ) we find for 
Pc ( s 1, s 2 ) an expression which coincides exactly 
with Eq. (5). Adding Eqs. (A.6) and (A.7) we get 
p ( s 2, s 1) in the region s 1 ~ 16J;, 2, s 2 < 16!L2, 

whereas by subtracting Eq. (A. 7) from Eq. (A.5) 
we obtain p ( s 1, s 2 ) in the same region. From 
this point on it is easy to get the expression for 
p ( s 1, s 2 ) which coincides with Eq. (5). 

APPENDIX 2 

Let us find the first approximation for p and 
Pc· We make use of Eqs. (5) and (6}, with A. 1, A.2, 

A.3 determined with the help of Eq. (8). Leaving in 
A.1o A.2 and A. 3 only a (a) and {3 ( 0') we get 

00 

p (s', s) = ~2 ~ ~r ( "· .,, ; s', s) {a ( T) a ( t') 
0 

oc 

+ ~ (T) ~ (T')} d'f dT' + ~2 ~ ~ f ('f, T'; S, s') 
0 

X {3a (T) a (T') + 2a ('f) [a ('f') + ~ (T')J} d'f dT', 

(A.ll) 
00 

Pc (s, s') = :. ~~ {f (or, T'; s, s') 
0 

+ f (T, T'; s', S)} a (T) ~ (T') dT d'f'. (A.12) 
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