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We evaluate the energy shift for the ground state of a large Fermi system when a localized 
perturbation is switched on, taking the interaction between the particles in the system into 
account. The energy levels of the localized states are then broadened into bands. We es
tablish a condition for the applicability of single-particle approximations to the description 
of states of this kind. 

]IE theory of localized perturbations in large 
Fermi systems (in particular, the theory of 
defects in crystal lattices ) has up to the present 
time been constructed in the framework of the in
dependent-particle model. It is known, all the 
same, that the approximation involved in this 
model is insufficient for a number of problems. 
Recent progress in the physics of many-particle 
systems (see, for instance, reference 1 which 
lists an extensive bibliography) enables us now to 
approach anew also the problem of localized per
turbations, using field-theory methods. 

1. THE EVALUATION OF THE SHIFT IN THE 
GROUND STATE ENERGY 

We consider here the problem of the shift in 
the ground state energy of a large system of in
teracting fermions when a localized perturbation 
is adiabatically switched on. 

We can write the Hamiltonian of the system in 
the second quantization representation in the form 

H = Ho +'A.V, (1.1) 

V = ~ dxV (x) 'I!J+ (x) 'iJ (x); (1.2) 

H0 contains the interaction between the fermions, 
and A. is the parameter which switches on the 
perturbation. The operators zp+ ( x ) and lfi ( x) 
satisfy the well-known commutation relations 

['I!J (x), '!'+ (x')] = b (x- x'), 

or 
E = (11' I Ho I 1¥) -i'A. \' dxV (x) lim GA (x, t; x', t'). 

j x'-+x;l'-+t+o (1. 5) 

We have introduced here a single-particle 
Green's function by the relation (reference 1 gives 
a bibliography on Green's functions) 

G~., (x, x') = i (1¥ ('A.) IT ('I' (x) 'I!J+ (x')) fW ('A.)); (1. 6) 

x, x' are points in four-space and T indicates 
Wick's chronologically ordered product. 

We use the obvious consequence of the fact that 
the ground state energy of the system is stationary 
with respect to a variation of the state vectors: 

dE/d'A. = (1¥ ('A.) IV 11¥ ('A.)). (1. 7) 

The expression ~E in which we are interested can 
then be written as follows: 

A 

tiE = - i ~ dA. ~ dxV (x) lim G" (x, t; x, t'). (1. 8) 
0 t' -+l+o 

If we write the Green's function GA. (x, t; x, t') 
as a Fourier integral in the energy E, we get 

A 

tiE=.}-.~ d'A. ~ dx Jim ~ deei<(t'-I)V (x) GA(x, x; e). 
m o 1'-+t+o c (1. 9) 

The choice of the contour C in this equation is 
connected with some general analytical properties 
of GA_. The function GA. is defined by the following 
formal operator relation2 

1 
GA=G1-J.,VG' (1.10) 

['I!J (x), 'I' (x')l = ['iJ+ (x),'i'+ (x')l = 0. (1.3) where G is the complete unperturbed fermion 
Green's function. Its Fourier transform can be 

The energy of the perturbed ground state of the 
system can be written in the form 

E = (1¥1 Ho + 'A.V 11¥), (1.4) 

where -.¥ is the actual state-vector of the system, 

written in the form 

G (k, e) = [e- e (k)- M (k, e)]-1 • (1.11) 

Here M (k, E) is the irreducible operator of the 
fermion self-energy. M (k, E) has a cut on the 
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real axis for - oo < E < EF and EF < E < oo, The 
branch point E F is the Fermi energy which is 
perturbed by the interaction. 

The function G11, has still poles corresponding 
to localized states with energies E < 0 which sat
isfy the equation 

I -AVO (e) = 0. (1.12) 

One sees easily that these poles lie indeed on the 
analytical continuation of GA, in the upper half
plane of complex €. It will, however, become 
clear in the following that they can be replaced in 
the discussion by some singular points on the real 
axis. The integration contour in (1.9) goes thus 
slightly below the real axis for - oo < E < EF and 
slightly above it for EF < E < oo. 

The exponential factor in (1.9) makes it possible 
to apply the residue theorem only in the upper 
half-plane and can formally be omitted. We have 
thus 

A 1 
11£ = ~~ df... \ dx I deV (x) 0 (x, x'; e) 1 _ AY (x') G (x', x; e) • 2n•.j .) .\ 

c (1.13) 

Integrating over A. we have 

11£ =- 2~i~ de SpIn (l- f...VO (e)). (1.14) 
c 

This last equation can be written in the form 2 

11£ = - -. 1_. ~ de In det (l -AVO (e)). (1.15) 
~1tl c 

We consider now the imaginary part of the in
tegrand in (1.15). Under quite general assumptions2 

about the character of the perturbation we have 

- H' Irn G (e) 1 1 )* 
Im In det (l - f...VO (e))= arc tg 1 -I..V Re 0 (e) · ( • 6 

Here 

3 \' k - Irn M (k, e) 
Im 0 (x, e) = (2n)- ~ dke' x (e- 8 (k) _ Re M(k, e))•+ (1m M (k, e))• 

X [TJ (k -- kF) -TJ (kF- k)J, (1.17a) 

Re 0 (x, e) 

3 \ k e-e(k)-ReM(k,eJ 
= (2n)- ,\ dke' x (e _ 8 (k) _ReM (k, e))2 +(1m M (k, e))2 · 

(1.17b) 

We shall see in the following that when E < 0, 
Im G (E) is small and decreases rather fast with 
increasing I E 1. Neglecting therefore ( Im G (E))' 
in comparison with 1m G (E) we find 

_!!_ arg det (1 - f...VO {e)) 
de 

. I..VlmG(e)(djde)[I..VReG(~)] 2 =f(e). 
- - (1 -I..V ReG (e))2 + (I..V Irn G e)) 

*arctg = tan-• 

(1.18) 

We go now over to the limit 1m G (E) - 0: 

Jim _!!_ arg rlet (I - f...VO (e)) -- Jt ~o (E- e~;J. (1.19) 
ImG(E)40de i 

In this equation Eoi are the energies of the 
"physical" localized states which are determined 
from the equation 

I - f... V Re 0 (e~) = 0 

We have thus 
0 

(1.20) 

\ lim .!!_ arg det (I -AVO (e)) de = vrr, (1.21) 
• lm G(E)-+0 de 

-00 

where v is the total number of localized states. 
In the case where 1m G (E) ¢ 0, v can be 

written in the form 

" 
v = ! ~ f (e) de. 

-00 

(1.22) 

In our discussion there enters thus naturally the 
energy distribution function f ( €) of the localized 
states which is given by (1.18). This function has 
a steep maximum near each of the roots of (1.20). 

We turn now to the evaluation of .6.E and we 
take into account that we can assume 
ln det ( 1 - A.VG (E)) to be a regular function on its 
Riemann surface in the upper half-plane and it can 
then under wel)-known limitations imposed upon 
V (see references 2 and 3) on the real axis be 
expressed in terms of its imaginary part, as fol
lows3 

00 

In det (1- AVO (e)) = ! ~ argdet (~ = :~G (e')) de'. 

-oo (1.23) 

Mter taking residues in the expression for .6.E we 
integrate the contribution from the "discrete" 
states by parts which leads to 

o 'F 

t.E = ~ ~ e f (e) de -f ~ arg det (1 -AVO (e)) de, 
~ 0 (1.24) 

This reminds us of the relation derived by I. M. 
Lifshitz, 4 but there is an essential difference in 
the first term which is connected with the localized 
states and this compels us to revise the concept 
itself of states of this kind. These are not ordinary 
discrete states but are wave packets where states 
with arbitrary E from the interval - oo < E < 0 
are present with weights proportional to f (E). 
Each ("physical" ) discrete level is broadened 
into a band. Different states in the band are oc
cupied with a probability proportional to f (E). 
One sees easily that the effective width of this 
band is given by the imaginary part of the root of 
Eq. (1.12) when it is analytically continued in the 
upper £-half-plane. 
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2. THE WIDTH OF THE LEVELS OF THE 
LOCALIZED STATES 

The analytical continuation mentioned a mo
ment ago is easily obtained if we consider G+ ( ~) 
and G_ ( ~ ). The function G+ (E) corresponds to 
G (E) of section 1 while the integration contour for 
G_(~) is above the real axis fore< ey and below 
it for E > EF. Because the Hamiltonian is 
Hermitian we have on the real axis G+(E) = G_(E). 

We now expand G+(E) around ~oi- io(o > 0). 
We get for the imaginary part of the root of (1.12) 

1 '\ .. d J 
2 r (e0) = V Im G (e0) I Te V ReG (e) •=•· (2.1) 

For the sake of simplicity we write in the following 
Eo instead of ~oi and G(E 0 ) instead of G+(E 0 ). 

We now bear in mind that for ~ < 0 we have 
Im G0 (E)= 0 and thus 

1 
Im G (e) = Re Go (e) Im 1 _ MGo (e) , (2.2) 

where G0 (~) is the Green's function when there 
are no interactions. 

When we take into account that Re Go (E) de
creases when I E I increases we can find for suf
ficiently large I €o I 
r (eo) = 2V Re Go (eo) ImM Re Go (eo) I [! v Re Go (e)].= •• 

(2.3) 
This equation can be rewritten as follows (if we 
use the explicit form of G0 (~) and assume that 
V does not introduce any analytical complications) 

f (eo) = 211 Re Go (e0 ) Im M Re G0 (e0) IV (Re Go (e0)) 2 • 

(2.4) 

We shall now consider the important case of a 
model with a c)-function perturbation when 
V = constant in the k-representation. In that case 

f (e0) = 2 ~ lm M (k, e0) 

X (Re G0 (k, e0)) 2 dk I~ (Re G0 (k, e0))2 dk (2. 5) 

and r depends thus on the perturbation only 
through E0• 

For our further considerations we need to know 
the asymptotic behavior of Im M ( k, ~ 0 ) for large 
negative E 0• To get this we write down an explicit 
expression in the simplest approximation5 

Im M(k, eo)=- 4~ ~ ~~ 1 1~~~q(q~ie)I'TJ(!k-ql-1), 
(2.6) 

where 

~e = e (k - q) - 80, (2.7) 

P ( q, t:.. ~) is the polarization operator and 

~ = e 2kF/7TeF· In our case t:..~ is large and as 
P ( q, A E ) is then small we have 

Im M (k, eo) = - 4~ ~ d~ lm P (q, ~e) TJ (lk- q 1- 1). 
q (2.8) 

We restrict ourselves to the lowest order 
polarization operator Po ( q, t:..e:). The quantity 
Po (q, t:..~) is for sufficiently large t:..~ different 
from zero only in the interval 

-I +Vi + ~eleF <:, qlqF <:, i +Vi + ~eleF (2.9) 

and can be written in dimensionless units 
(y = t:..~/EF, x = q/qF) as follows 6 

lmP0 (x,y)=-;!.[r-±(~- xr\. (2.10) 

This enables us to evaluate the average value of 
the integral in (2.8) by putting 

~X= 2, X= VY: (2.11) 

We note now that by virtue of (2. 7) 

/). = [e (k)- e0] / er (2.12) 

The main contribution to (2.8) is thus provided by 
those values of q which satisfy the relation 

(2.13) 

This gives 
n£ Im P0 (x, y) =- 2x• . (2.14) 

In this equation x is determined from (2.13). 
The remaining integration over the angle (from 

0 to 1rj2, as t:.. > 0) is trivial. If I ~ 0 I > eF we 
get 

Im M (k, e0) = 4neFs2 (k I kF)3 6.-3 . (2.15) 

We can now find r ( e: 0 ) from (2.5): 

r (eo) = ¥2 8 s2 (leo I)' -•;, 
3 F Bp 

(2.16) 

The single-particle approximation gives only a 
real contribution to M (k, e: 0 ). It is thus possible 
for us to establish some criterion for the applica
bility of the independent particle model to a de
scription of localized states. This can be written 
in the form 

ss(l::' )-•;, < 1. (2.17) 

It follows from general considerations that 
contributions in higher order perturbation theory 
to r ( € 0) decrease faster than the term (2.16) and 
this determines how effective the criterion (2.17) 
will be. Condition (2.17) is for the case of lattice 
defects rather well satisfied and this justifies to 
a certain extent the application of single-electron 
theories to describe defects. 
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It is necessary to note in conclusion that we 
have practically made no use of perturbation 
theory as far as V is concerned. Such a theory 
must be constructed rather carefully to avoid 
divergences which are possible when localized 
states are formed. Schwinger2• 3 has considered 
a similar problem. 
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Translated by D. ter Haar 
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