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We consider an unstable particle which can decay according to V- N + e in the Lee model 
of a nonrelativistic second-quantized theory. Perturbation theory for an eigenstate expan
sion of any initial state is generalized to the case of an unstable particle. A quantity play
ing the role of the norm of the state of such a particle is defined. A new method is given 
for finding the amount of time a stable V' particle, which can undergo virtual transitions 
to the N + e state, spends in each of its two possible states. This method is then applied 
to an unstable V particle, and a definite value is obtained for the amount of time it spends 
in each state; however, this value is found to be complex. 

WE follow Lee1 and consider a system consisting 
of three particles, V, N, and e, whose interaction 
leads to the decay V- N + e. Unlike Lee, how
ever, we assume that mv > mN +me, so that the 
V particle is unstable and decays spontaneously 
into an N and a e. Then the set of stationary 
states with positive real energy E does not in
clude V states. In the spectrum of this system, 
the unstable V will appear simply as a resonance 
in the e and N states at a given energy Eo (with 
E0 > mN +me, and some resonance width y). It 
is clear, furthermore, that in the nonstationary 
problem the wave function of the system will have 
a term proportional to exp (- iE't) = exp ( - iE0t 
-yt), describing V decay. 

In the case of a stable V particle, the interac
tion gives rise to a term in its wave function which 
describes an admixture of the N + e state. In con
figuration space and in the simplest case of an S 
wave, this mixed state is described by a wave func
tion of the form f(r) = Ce-Krjr, where r is the 
distance between the N and the e. 2 It is then easy 
to normalize the physical V state and to calculate 
how much bare V and how much N + e it contains. 

The wave function of an unstable V particle is 
a superposition of the bare V wave function and a 
diverging N + e function, which in configuration 
space (in the case of an S wave) is of the form 
f ( r ) = ceikr I r. 

At first sight such a state cannot be normal
ized, and it would then seem that it is impossible 
to find the amount of bare V in the unstable phys
ical V state. It will be shown below, however, 
that if one uses the techniques developed for the 
description of unstable states in the SchrOdinger 
quantum mechanics of a single particle, 3 one can 
uniquely answer all questions for unstable par-

ticles which are solvable in an elementary way 
for stable ones. 

With this in mind, we start with a new definition 
of the concept of the fractional amount of a given 
state, using first the case of stable particles (for 
which everything is clear). 

Consider an eigenstate "Ill of a Hamiltonian H 
including interaction ( H"IJI = E"lll), and let this state 
be written in the form 

where 1/Jv is the creation operator for a bare V 
particle, lf!N and lf!e are creation operators for 

(1) 

N and e particles, and I o> is the vacuum state.* 
The normalization condition is 

(2) 

The usual procedure is the following. We sup
pose that the interaction leading to the transforma
tion V - N + e is instantaneously turned off (the 
Hamiltonian changes from H to H0 ). In the system 
described by H0, the number of V particles is con
served, and the number of N + e particles is con
served separately, and therefore the fraction of 
such states at the instant before the interaction 
was turned off is given, respectively, by I a 12 and 
jlf(r)l2 dT. 

Our new approach is the following. We apply to 
the system in state "Ill a small perturbation of the 
form oH = ovlf!Vlf!V· In the first approxima_tion the 
energy is perturbed by an amount 

*The wave function could also be written in Fock space as 
a column, each row of which corresponds to a different number 
of particles. Then the row with amplitude a would correspond 
to V, while that with amplitude f (r) would correspond to N + 0. 
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{)£ = Kbv. (3) 

The coefficient K in this formula is then the frac
tion of bare V in the physical V state. The prin
ciple behind this new approach can be explained by 
analogy: the fraction of iron in a mixture of iron 
and wood filings can be found by placing the mix
ture in a weak magnetic field (which will not de
stroy the mixture), and measuring the force on 
it; the usual approach corresponds to destroying 
the mixture (by sorting). 

In the same way one can find the fraction of 
N + (} by turning on, for instance, a perturbation 
of the form 62H = oNI/JNI/JN and calculating the 
first-order correction to the energy 

(4) 

The fraction of N + (} is then given by q. The nor
malization of '11 leads to the identity K + q = 1. 

For a stable particle the new approach gives 
exactly the same result as the usual one. 

This new approach, however, can be applied 
also to the case of an unstable particle. Then for 
a particle whose wave function is of the form 

(5) 

we obtain3 

K = a(/ I [ aa• + ~ f(r) T (r) d-t ] , (6) 

q = ~ t (r) r (r) d~ ; [ aa· + ~, (r) r·<r) d~ J . (7) 

where a and 1 correspond to the solution with the 
complex conjugate boundary conditions. In the sim
plest case of an S wave and a real coupling con
stant g, we have f ( r) = ceikr /r, f* = f, and a* 
=a, and then the integral in Eqs. (6) and (7) be-
comes 

4n0 ~ e2ikrdr. 

For an unstable particle the k here is complex, 
and e2ikr increases exponentially as r - oo • Now 
as has been shown elsewhere,3 the integral can be 
given a well defined meaning, and it turns out to 
be equal to - 47TC2/2ik. Thus for S waves the 
fraction of bare V in the physical V state is 

a2 
K = -a~2 -_---,4,---n-="C:c--2 1"""2:-:cik,--- ' (Sa) 

and the fraction of N + (} is 

4 nC2 I 2ik 
q =- a2 -4nC2 12ik 

(8b) 

These formulas are analytic continuations of the 
corresponding formulas* for the stable particles, 

*Since C "'a and C/a is real, Eqs. (9) can be written 
without the absolute value sign on a and C, which emphasizes 
their resemblance to (8a) and (8b). 

where for S waves one finds 
1 I a 12 f (r) = C-r e-xr, K = I a I'+ 4n I c 12 /L.x 

_ 4n I c 12 1 2x 
q - I a I'+ 4n I c 12 1 2x 

(9) 

In particular, if we let my approach mN +me, 
i.e., go to the boundary between stable and unstable 
V, we find that K approaches zero and q ap
proaches 1, independently of whether we approach 
this boundary from the region of stable or unstable 
V. Some artificiality in this concept of the "frac
tion of the state" for the unstable particle is mani
fested by the fact that K and q are then complex. 

For particles with spin, in which case the decay 
products have orbital angular m@ffientum, the wave 
function has a nonintegrable singularity at r = 0. 
This difficulty exists both for the stable and un
stable cases, and can be removed only by a cutoff 
for small r (or a form factor in the interaction). 
On the other hand, it is a simple matter3 to elimi
nate difficulties connected with the fact that f ( r) 
increases exponentially for ~arge r when l ~ 0 
for the unstable-particle case. 

Let us now consider the Cauchy problem. Let 
the initial wave function be of the form 

1¥ (t = 0) = I t\j:v + ~ h (r) dT 'IJN'Pol 0) (10) 

with arbitrary b and h ( r). It can be shown that 
the leading term in the solution is then of the form 

1¥ (t) = ne-iE't lfv = ne-iE't I a'!Jv + ~ f (r) 'VN'Ved~ I 0), (11) 

and that the coefficient n in this expression is 
given by 

('Y~'¥ (t = 0)) [ \ ikr J 
n= C'fi~'¥v) a2-4nC•I2ik ab+.h(r)C-r-d~ . 

Th 'f' . th . ht 'd f (12) e spec1 lC expressiOn on e r1g s1 e o our 
equation is correct for the simplest case of an S 
wave and a real coupling constant g, for which 
f(r) = ceikr;r. 

Thus also in the Cauchy problem the denomi
nator of Eq. (8a) represents the norm of the state 
for the decaying particle. For an S wave and a 
real coupling constant g in the interaction term 
g ( 1/Jvi/JNI/Je + 1/JNI/Jei/Jv) we find that the quantities 
entering into (1) are 

f (r) = Ce-"' I r, C = 2agmr I 4n, mnp = mNmo I (mN +me), 

x = J/2mr (mN +me- mv); 

and that the quantities entering into (5) are 

f (r) = Ceikr I r, C = 2agm r I 4n, 

k = V2mr (mv- mN- me- iy) =k0 - irm r I k0 , 

k0 = Rek = V2m r (mv- mN- mo), 

r =- lmEv = (g2 12n) mrk0 • 
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Now introducing the decay probability w = 2y, 
writing ~ = mv -mN -me, and expressing g2 and 
k0 in terms of these quantities, we arrive at the 
fraction of N + e in the unstable V state (for w 
:::: k0), namely 

q = iw/ 16n~. (13) 

The m v that enters into all these expressions 
is the renormalized mass. 

We shall not go into the simple operations which 
lead one to the above results, but shall merely de
scribe the basic assumptions. The Lee model is 
an example of a theory in which there are particles 
which can decay into each other. In this particular 
case it is possible to solve the problem completely 
because one needs to consider only a finite number 
of different kinds of states (for instance V and N, 
e in one problem, or V, e and N, 2e in another 
problem). 

In the Lee model this happens because of selec
tion rules of the same kind as charge conservation. 
In particular, V + N (the baryon number) is con
served, and V + e (the electric charge) is con
served. These selection rules, however, would 
not lead one to the goal if it were not for the fact 
that at the same time anti-particles and therefore 
e, e pair creation, etc., were not excluded from 
consideration. 

A consistent relativistic theory cannot exist 
without antiparticles, and therefore it is logical 
to make still another simplifying assumption by 
considering the nonrelativistic problem in which 
the particle energy is E = Eo + p2/2m, so that 
one need not introduce the factor 1/2w into the 
e normalization. At the same time, the concept 
of wave-function and mass (or energy) renor
malization is maintained in the nonrelativistic 
theory. The description of real and virtual decay 
in a second-quantized nonrelativistic theory, and 
in particular the definition of the ''fraction of a 
state" in virtual decay (i.e., for a stable state) 
has been given elsewhere2 [in particular, Eqs. 
(28) and (26) of the cited reference]. 

As has been mentioned by N. A. Dmitriev, the 
expression 

N = ~ ['ljl2 (r)- (Ceikrjr) 2 ) d-r- 4nC2/2ik (14) 

which plays the role of the norm in an unstable
state solution of a Schrodinger problem, 3 (the ana
log of this expression is 

N = a2 - 4nC2/2ik (15) 

of the present paper), has already essentially ap
peared in some work of Ning Hu, 4 involving disper
sion relations. 

Indeed, according to Heisenberg, a normalized 
stable (bound) state whose asymptotic wave func
tion is of the form 1/J = Ce-Kr /r leads to a residue 
in the scattering amplitude S ( k) at the pole cor
responding to the state, that is at k = iK, given by 

~ S (k) dk = 8n2 I C 12 • (16) 
k=ix 

Using the fact that the bound-state function is real, 
we write this result for an unnormalized function 
in the form 

~ S (k)dk = 8n2C2 j ~ 'ljl2 (r)dT (17) 
II :::.:ix. 

Ning Hu gives a similar expression [ Eq. (28) 
in his cited work] for the residue at k = k1, with 
Im k1 < 0, which corresponds to an unstable state. 
His expression is 

R 

2ik1 (~~ \=-k, = 2k1 ~ (nW dr + i !R'Ijl (R)J2, (18) 
0 

where lf! ( r) is the unstable-state solution whose 
asymptotic form is lj! = eik1r/r. We choose R so 
large that lj! is essentially in its asymptotic form, 
and introduce C by writing lf! = ceik1r /r for r 
::::: R. Some elementary operations lead to 

"" (dS )-1 'j' S (k) dk =-- 2ni dk, k~-k, 
h=ht 

R 

= 2nC2 I \ 'ljl2r 2 dr + 2~ [R'Ijl (R)J2 
" 1 
0 

R 

= 2ncz I I 'ljl2 rzdr + )_ C2 e2ik,R 
.\ 2kl 
0 

= 8n2C2 I r [ 'ljl2 - ( ce;k,r r J d-r- ~~~2 
0 (19) 

0 

The resemblance of (17) to (19) is obvious. 
I take this opportunity to express my gratitude 

to N. A. Dmitriev for valuable discussion and for 
aid in the work. 
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