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An expression for the scattering cross section of low-energy photons on a system with spin 
% is obtained within the framework of the local theory, with an accuracy up to terms quad­
ratic in frequency. In addition to the constants e, M, and A. (which represent the charge, 
mass, and anomalous moment of the system respectively), three other parameters, a, {3, 

and < r~> (representing, respectively, the electric and magnetic polarizabilities and the 
mean-square radius of the charge distribution of the system) also appear in the cross­
section formula. 

1. INTRODUCTION 

Low1 and Gell-Mann and Goldberger2 have inves­
tigated the scattering amplitude of light on a sys­
tem with spin % within the framework of the local 
theory. It has been shown that, from the require­
ment of the relativistic and gauge invariance of 
the theory, one can draw definite conclusions con­
cerning the scattering amplitude, with an accuracy 
up to terms linear in frequency. For a com pari­
son of the theory with experiment, it would be in­
teresting to obtain not the amplitude but the differ­
ential cross section. It is the purpose of the pres­
ent paper to obtain a formula for the cross section 
with an accuracy up to terms quadratic in the fre­
quency. To this end, it is necessary to take into 
account in the expression for the amplitude the 
quadratic terms which interfere with the Thomp­
son scattering amplitude and thus contribute to 
the quadratic terms in the expression for the cross 
section, in addition to the linear terms. No com­
plete derivation of a general formula for the light­
scattering cross section on a system with spin 'f2 

has been given in the literature, although the im­
portance of the quadratic terms was indicated, and 
the calculation of some of them carried out, by 
Klein3 and Baldin.4 (A preliminary report was 
presented by Baldin at the Elementary Particle 
Conference in Padua in 1957.) 

It is also interesting to obtain the general for­
mula for the cross section in order to find such 
characteristics of the nucleons as their electrical 
( a ) and magnetic ( {3 ) polarizability. In the con­
elusion, we shall dwell briefly on the possibility 
of obtaining numerical estimates of a and {3 from 
the presently-available experimental data on the 
Compton effect on protons. 5•6 

2. CALCULATION OF THE SCATTERING AM­
PLITUDE 

Within the assumptions made by Low, 1 we can 
write the following expression, quadratic in e, for 
the matrix element for the scattering of a photon 
with four-momentum k and polarization e on a 
nucleon* with momentum p. The scattered photon 
then has a momentum k' and a polarization e': 

(e'k' p's' IS I ekps) = - V ~~k' ( p's' j e2 ee' ~ <D (x) <D (x) 

x exp (i (k -k') x] dx jps) 

- V41kk' (p's'J ~ p [j (x) e', j (y)e] 

x exp (i (ky -k'x)] dxdy Ips) (1) 

where p' is the momentum of the final nucleon, s' 
and s are the projections of the spin of the initial 
and final nucleons, (kx) is the scalar product of 
the four-vectors, and «<>(x) and h,{x) are time­
dependent operators of the meson field and of the 
current in the electromagnetic representation of 
the interaction. 

We shall change Eq. (1) over to time-independent 
operators, using the transformation 

A (x) = eiH,t A (x) e-iH,t, 

where H0 is the total Hamiltonian of the meson 
and nucleon fields. 

Writing the P-product explicitly and letting the 
operator Ho operate on the indices of the matrix 
element, we obtain, after an integration with re­
spect to t, 

808 

*Henceforth, we use the word nucleon as an abreviation for 
a "system with spin ~-" 
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<IS I> =- -v!:k' 6 (E (p') + k'- E (p)- k) [ 2i (I e2ee' ~ <D* (x) <D (x) exp [i (k- k') x] dx I) 
+(\~j(x)e'exp[-ik'x]dx i(Ho-i(p)-k) ~j (y)e exp [iky]dyl) 

+ (~ j (y) eexp [iky] dy i (Ho-~ (p) + k') ~ j (x) e' exp [- ikxj dx I> J . 
We shall expand the last two terms in Eq. (2) in terms of the total system of physical states of the 

meson-nucleon field. We then have 

2n · 
<! S I>= -v 4kk' 6 (E (p') + k' -E (p) -k) [ 2i (I e2ee' ~ <D* (x)<D(x) exp [i (k- k')x] dx I) 

(2) 

(j ~ j (x)e' exp [- ik'x) dx jN )(N j ~j (y)eexp [iky) dy I) (I J j (y)eexp [iky] dy / N><N I~ j (x)e'exp [-ik'x) dx/ )] 

+~ i[EN-E(p)-k] +~ i[EN-E(p)+k'] . 
N N (3) 

In order to obtain the momentum-conservation law (I e2ee' I cp· (x) <P (x) exp [i (k _ k') x] dx 1) 
explicitly, we shall use the translational invariants ) 
of the matrix element. We show the detailed calcu­
lations only for the first term in Eq. (3): 

( p' s' I e2ee' ~ <D* (x) <P (x) exp [i (k- k') x] dx Ips) 

= exp [- i (p'- p) a] (p's' I e2ee' ~ ¢• (x- a) 

x <P(x-a)exp[i(k-k')x]dxlps) 

= exp[-i(p' + k' -p-k)a] 

X ( p' s' I e2ee' ~ <P* (x') <P (x') 

x exp [i (k- k') x'] dx' Ips) . (4) 

Integrating the right- and left-hand sides of Eq. 
(4) with respect to a, we finally obtain 

(2n)3 6 (p' + k'-p- k) <I 2 , 
= v e ee 

x ~ <P* (x) <P (x) exp [i (k- k') x] dx I) . 

It can easily be seen that the coefficient ahead of 
the matrix element, appearing as a result of the 
transformation carried out, is equal to 1.* Hence­
forth, we shall write the matrix elements of oper­
ators containing integrals as 

(I e2ee' ~ <P' (x) <P (x) exp [i (k- k') x] dx l) 
= (2:rt)3 6 (p' + k'- p- k) 

x [-} (I e2ee' ~ <P* (x) <P (x) exp [i (k- k') x] dx I) J . 
We assume the quantity in the brackets to be finite. 

From the translational invariance of the two 
terms of Eq. (3), we can easily obtain the expressions 

<IS I) =- ~~:~, 6 (p' + k' - p - k) { ~ (I e2ee'~ <P* (x) <P (x) exp [ i(k- k') x] dx I) 
+ L [ <I j (0) e' I vcrk) <vcrk I i (0) e I> + <I j (0) e I vcr- k') (vcr- k' I j (0) e' I> J 

va i [£v (k)- M- k] i [£v (k')- M + k'] 

+~[<I~ i (x) e' exp [- ik'x~ ~:~~~ ?~~'~J ~ j (y) eexp [iky] dy J) 

-i- <l~j(y)eexp[iky]dyjN-k)(N-k'J~ j(x)eexp[-ik'x]dx [)]} 

' i [EN'-M+k']V 2 • 
(5) 

We have separated the single-nucleon term explic­
itly, and set the momentum of the initial nucleon 
p = 0 (in the laboratory system ) . The indices v 
and a indicate the summation over positive and 
negative energies and over the projections of the 
nucleon spin in the intermediate state. It would 
be more consistent to work with positive energies 
only, adding to the single-nucleon expression those 
terms of the sum over all excited states which con­
tain a pair in the intermediate state in addition to 
the nucleon. However, it is simpler for us to carry 

out the summation over negative energies. t 
The amplitude component due to the contribution 

of single-nucleon terms can be calculated directly 
if we use the total formula for the matrix element 
of the current operator connecting single-nucleon 
states:t 

*This is true for the limiting case V -> oo. 

tSee Heitler7 pp. 213-214 concerning the equivalence of 
the results obtained. 

tSee reference 1, Eq. (3.1). 
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(p2Jjp. (O)I p1> = iu (p2) !eyp.f (l'>.p2)- criJ.V l'>.p) ... 'g (!'>.p2)l u (p1), 
l'>.p = p2- p1, 'A' = 'Ae/2M, O'p.v = i (YvYp.- ')'p.Yv)/2. 

The calculation of the single-nucleon part of 
Eq. (5), using Eq. (6), leads to the expression 

~f. ... ] = iN (p') N (p) 

X <I e2f2 ' . e•f k (f + 2' ) [ ' J ' J\.1 ee - t 2M M r.g a e e 

e2 k - i 2M M (f + 'Ag) 2 a [ [nel [n'e']] 

- i;~ ~ (f + 'Ag) ((en') (a!n'e'l)- (e'n) (a [nel)) 

(6) 

-+ 2e~ ( 1~ r (f + 'Ag) 2 (ee' (1 - cos26)- (en') (e'n) 

X (1 -cos 9)) 

- ~ 2~ ( i-)" (2'Agf + 'A2g2) (en') (e'n) I) , 
N(p') = V1/2(1 +MIE(p')), N(p) =I, p=O. (7)* 

In deriving Eq. (7), we have changed over to two­
row matrices, and have limited ourselves to terms 
quadratic in frequency. Terms quadratic in k and 
containing the operator u have been dropped, since 
their contribution to the cross section is of the 
order of k3 and less. The functions f and g char­
acterizing the spread of the charge and of the mag­
netic moment of a nucleon in the non-relativistic 
approximation can be written as 

f ( f1p2) = 1 - + < r; > k2, g ( f1p2) = 1 - To < r!> k2. 

where <rt> and <r~> are the mean-square 
radii of the charge and of the magnetic mo­
ment. In our approximation, we must, in the ex­
pression for the amplitude, set the functions f and 
g equal to one in all terms except the term 
e2f 2M-1e · e'. 

As was shown by Low, 1 the sum of the first and 
third terms in Eq. (5) does not contribute to the 
single-nucleon term in the approximation linear 
in k. For the problem on hand, let us first con­
struct the general form of the terms quadratic in 
k that are due to this sum and that do not contain 
the operator u. From e, e', k, and k' one can 
write the general expression 

y1ee'k2 + Y2 {ee') (kk') + y3 (ek') (e'k). (8) 

Expressions of the type ex k, e' x k', ex k', e' x k 
can be reduced, as can easily be ascertained, to the 
form (8). y1, y2, and y3 denote still unknown coef­
ficients, whose meaning must be explained. To this 
end, we shall use the formula proved in reference 1 

*[ne] = n x e. 

k1kig,.i= k'k (j~P [p (x) p (y)l exp (i (ky- k'x)J dx dyl), 

(9) 
where gij is defined in the following way 

(lSI>= -e;ejgij!V4kk'. 

Equation (9) is obtained as a result of the gauge 
invariance of the theory. Carrying out a transfor­
mation of the right-hand side of Eq. (9), analogous 
to those carried out earlier, we easily find that 

k;kigii = i (2ll) 4~ (p' + k' - p - k) {single-nucleon term 

, , [ ( 0 I~ p (x) x,-dx I N'O) <wo I~ p (y) yidy I 0) 
-kkk;ki ~ (E ,-M) V" 

N' N 

<ol~ p(y)yi dy IN'o)<N'OI~ p(xJ:x,-dx lo)]} 
+ (Ew-M)V2 • 

Under the summation sign we have the equivalent 
of a symmetrical tensor Cl!ij. For a particle with 
spin Yz, this tensor should be of the form aoij. 
Thus, transitions to other states make an additional 
contribution of the form ak2k · k', in addition to the 
single-nucleon term. It is natural to name the con­
stant 

a= ~ [< o 1 ~ r<x)x,dx I(~:~So>:l ~ p <YlY;dY lo) 

<o I~ p (y) y,.dy I ON') <ON' I ~ p (x) x1dxlo) l 
+ (EN,- M) V2 _ 

(10) 

the electrical polarizability of the nucleon. 4 Com­
paring the left-hand side of Eq. (9) with the right­
hand one we see that, to have an equality, it is nec­
essary that y2 + y3 = 0 and y1 = -a. The equality 
of the single-nucleon terms on the left- and right­
hand sides follows automatically from the require­
ment that the single nucleon terms should vanish 
for an exchange of e - k and e' - k' which, as 
can easily be checked, is satisfied in our case. 
As a result, we obtain the following form of the 
matrix element for the process under considera­
tion 

< lSI>=- i (Zn)• ~ (p' +k' -p -k) {(I( ... ) 
V4kk' · 

-ak2ee'- ~ Ike] [k'e'JI)}, (11) 

The symbol •.. denotes the single-nucleon term 
in the amplitude, and {3 =- y2 = + y3• 

In order to explain the physical meaning of the 
constant {3, we shall carry out a Foldy transfor­
mation8 of the expressions that lead to the term 
{3k x e · k' x e'. This transformation means that 
exp (iq • r) is transformed in the corresponding 
matrix elements according to the identity 
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eeiqr = ~ {grad (ereisqr) - i [r [qell eisqr} ds. (12) 
0 

After substituting, we see that {3 is given by the 
following approximation: 

<ol ~ [j(y)y]dylwo)<woj ~ [j(x)x]dx/o)J (13) 
+ (EN,-M)V' · 

The "approximately-equal" sign, rather than the 
equality sign, is used above, since, in general, other 
terms not written here may also contribute to (3. 
This problem requires additional investigation. 

The first term in Eq. (13) has no simple phys­
ical meaning, while the second term, like a, can 
be called the magnetic polarizability. Henceforth, 
we shall define the magnetic polarizability as the 
sum of all contributions to (3, i.e., as (3 itself. 

3. DIFFERENTIAL CROSS SECTION 

The differential cross section is given by the 
equation* 

do = · 4!k' I Q 12 ~~~~;2 c5 (p' + k'- p - k) c5 (E (p') 

+k'-E(p)- k), 

where Q is the expression inside the braces in 
Eq. (11), and J is the current density of the col­
liding particles. 

Averaging and summing up over the spin pro­
jections of the nucleons and of the photon polari­
zation, we obtain a formula for the differential 
cross section for the scattering of an unpolarized 
photon beam on unpolarized nucleons: 

:~ = + ,g { [ 1 -2 ! (1 -cos 6) 

+ 3 (! f (1- cos)2 J (1 + cos26) 

+ (! y [(1 -cos 6}2 + f (6)1 

- [ f (r~) M2 + 2 a~"](!)' (1 + cos2 6) 

[3M" ( k '2 } -4~ M) cos6 , 

ro = e2/M, f (6) = G0 + Gt COS 6 + G2COS2 fl, 

a0 = 2A. + ~ A.2 + 3A.3 +~ A.4 , at = - 4A. -5A.2 - 2A.3 , 

G2 = 2). + ..!_ A. 2 - A.3 -..!. A4 (14) 2 4 • 

fu deriving Eq. (14), the terms containing powers 
of frequency higher than k2 were neglected. Equa-

*See reference 9, p. 292. 

tion (14) contains the three additional constants 
a, (3, and <r~>. as compared with the formula 
of Powell10 for the scattering of light on a charged 
particle with anomalous momentum A.. The value 
of < r~ > can be obtained from experiments on 
the structure of the nucleon. We can attempt to 
determine the constants a and (3 from protons by 
comparing Eq. (14) with the experimental data. 
The reader may refer to such a comparison car­
ried out by Gol' danskii et al. 6 

4. CONCLUSION 

We shall make a few comments concerning the 
role of the separate terms in Eq. (14), and the re­
gion of its applicability. The role of the separate 
terms is characterized by the following data: 

10-20 Mev 50-60 Mev 90-100 Mev 
Term containing ..\: 

Term containing <r~ >: 
1% 

0.3% 
10% 

4% 
50% 

12% 

Henceforth, we put % (e2/M)2 = 1. fu the esti­
mates, we have put A.= 1.7 and ...J <rt> = 0.8 
x 10-13 em. We cannot give a good estimate of 
the terms containing a and (3, since there is no 
rigorous theory concerning these parameters. 
The estimate of the quantity 

, 1 e• 2 1i 
ot = 3TC (r,) Me+ ot, 

carried out by Baldin4 has yielded the following 
results: 

0.4 · 1 o-42 em 3< ot' < 1,5. I o-42 em 3• 

The lower limit of this estimate has been obtained 
from the relation between the polarizability and 
the amplitude of the electrical-dipole photoproduc­
tion of rr mesons. The upper limit of the estimate 
has been obtained by an analysis of the experimen­
tal data on the Compton effect. Gol'danskii, et al. 6 

have obtained the value of a = ( 0.9 ± 0.2) x 1o-42 

cm3• It is easily concluded from this that the con­
tribution of the term containing a may amount to 
5 to 12%. No reliable theoretical estimates of (3 
are at present available. From the fact that the 
measured cross section is not greatly different 
from the cross section given by the formula of 
Powell, we can conclude that the contribution of 
the term containing (3 is not greater than the con­
tribution of that containing a. 

Thus, each of the terms containing a and (3 
makes a contribution of about 10%, in its order of 
magnitude. This indicates that we have to be very 
careful in determining a and (3 directly from ex­
periments by comparing Eq. (14) with experimental 
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data. This is because we do not have an exact es­
timate of the terms neglected in Eq. (14). We can 
expect that the contribution of the consecutive 
terms of the expansion will amount to "' k/ J..t 
(where J..t is the meson mass ) of the contribution 
of terms containing a and {3. If we want to fit the 
experimental data on the Compton effect on a pro­
ton with an accuracy of 5%, then Eq. (14) is satis­
factory in the 0-70 Mev energy range. If we want 
to determine the parameters a and {3 to within 10 
to 20% by comparing Eq. (14) with experimental 
data, then experiments on y-ray scattering at 10 
- 30 Mev energy are necessary, which are at pres­
ent already on the border-line of experimental 
feasibility. A more exact evaluation of this limit 
depends on the estimate of the neglected terms in 
the amplitude, which has so far not been carried 
out. 

In conclusion, the author wishes to thank A. M. 
Baldin for proposing the subject, and for his con­
stant interest in the work. 

Note added in proof (April 7, 1961): A more 
exact analysis shows that the summation over 
negative energies in the single-nucleon term (see 
footnote 3) does not take into account all the inter-, 

mediate states involving pairs, but accounts only 
for those which correspond to usual diagrams of 
the perturbation theory. The remaining states 
should be included in the sum over N'. 
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