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We propose a method for approximate evaluation of the thermodynamic functions of a partially 
ionized gas, taking into account deviations from ideality. We obtain an equation of state and 
an ionization formula which is appreciably different from the Saha formula. 

l. A large number of papers have been devoted to 
a discussion of the equation of state of a totally 
ionized gas. There is, however, no satisfactory 
theory to describe the state of a partially ionized 
gas. We shall consider one possible derivation of 
an approximate equation of state, using as an ex­
ample hydrogen at temperatures of the order of 
several electron volts and pressures of the order 
of tens of atmospheres. 

Let a uniform plasma of temperature T contain 
within a volume V three components: neutral hy­
drogen atoms, electrons, and ions. Since the 
plasma is electrically neutral, 

where neo and nio are the average electron and 
ion densities, respectively. 

( 1) 

The effects of the interaction between particles 
in the plasma lead to a change in the atomic energy 
levels and also to the so-called "cut-off" of the 
atomic partition function, manifest spectroscop­
ically by the vanishing of Fraunhofer lines corre­
sponding to relatively high values of the principal 
quantum number. The discrete states near the 
continuum vanish for two reasons. First, because 
the broadening of the levels caused by the interac­
tion between the atom and the charged component 
of the plasma or the other atoms may turn out to 
be comparable with the spacing of the levels, so 
that levels with relatively high values of the prin­
cipal quantum number overlap. Second, the action 
of the quasi -static microfield of the plasma on the 
atom causes ionization of the upper atomic levels. 

Generally, one must take both these effects into 
account when evaluating the partition function. If, 
however, the electron density exceeds about 
10 17 em - 3, the second effect is dominant ( strong 
electrical microfield) and one can neglect the 
first one. Margenau and Lewis 1 have, for instance, 
studied this problem in detail in their survey ar­
ticle. 
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We shall consider the influence of the screened 
electrical charges on the atom. One can describe 
this influence in the adiabatic approximation by the 
perturbation of the atom by an electrical field F: 

F = 2J F; (r;) = e .2] r;r;-3 (I + xr1) exp (- xr1), (2) 
i i 

where K = "( r5kT /3) - 1/ 2 is the inverse Debye radius 
(in atomic units) and r 0 the average distance be­
tween the ions. 

Hoffman and Theimer2 obtained the statistical 
distribution of the field. If the ion and electron 
densities are not too small, one can use for the 
evaluation of the field distribution the so-called 
"nearest neighbor" approximation which takes 
only the influence of the nearest ion on the atom 
into account. The probability of finding a perturb­
ing ion at a distance r from the atom is then given 
by an expression of the form 

dP (r) = 4n n exp {- uk<,p 
r 

- 4nn ~ r'2 exp [- U k~') J dr'} r 2dr, (3) 
0 

where U ( r) is the potential energy for the inter­
action between the ion and a hydrogen atom and n 
the ion density in the plasma. 

When the Stark effect in a strong electrical 
field is evaluated one determines the value of the 
critical field F~0 for which the spectral line cor­
responding to an initial state of the atomic elec­
tron with principal quantum number m 0 vanishes. 3 

A classical calculation of the threshold for ioniza­
tion gives the following value for the critical field 
F mo. 

0 ' 
F!;'' = e/16m~a~, (4) 

where a0 is the Bohr radius. 
A comparison with the quantum -mechanical cal­

culation and with experiment (see reference 3) 
shows that F~0 can be approximated with fair 
accuracy by an expression of the form 
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(5) 

If we take the screening of the perturbing ion into 
account, we get for the field acting upon the atom 

F (r) = er-2 (1 + xr) e-xr, (6) 

where r is the distance between the atom and the 
perturbing proton. 

Comparing Eqs. (5) and (6) we get for the quan­
tum number at which the partition function must be 
cut off: 

(7) 

It is necessary to note that the electrical field 
inside the plasma can be different from the field 
used in the proposed model. It is thus necessary 
to compare the theory with an experiment on the 
vanishing of spectral lines in a plasma, and we 
shall do this below. 

The partition function of the atom as a function 
of the distance r between the atom and the per­
turbing ion, 

m, 

Z (r) = 2 .2] gn exp [-En (r)lkT], (8) 
n=l 

contains En, the energy of the atomic levels in an 
external electrical field, and gn, the statistical 
weight of the corresponding levels. One can show 
that for electron densities less than 1020 em - 3 we 
do not introduce a serious error if we write Z ( r) 
in the form 

m, 

Z (r) = 2 .2] n2 exp [- In (r)lkT], ( 9) 
n=l 

I (r) = Io (1 - 1/m~(r)), (10) 

where I0 = e 2/2a0 = 13.53 ev (ionization potential 
of hydrogen), In= I(r)/n2• We have assumed 
here that the energy levels of the hydrogen atom 
are unperturbed and that the cut-off occurs at 
n = m0• 

We take the energy of the m0 level as the zero 
point of the energy, i.e., we assume that Em0 is 
the boundary of the discrete and the continuous 
spectra of the relative motion of the electron and 
the proton. This corresponds clearly to an effec­
tive lowering of the ionization potential [see Eq. 
(10)]. We assume then that upon going over into 
the continuous spectrum the electron moves in a 
potential caused by all the free charged particles 
in the plasma, i.e., in the Debye potential. We 
note that this assumption is not an obvious one and 
needs further justification. A rough estimate shows 
that this assumption introduces an error of the 
second order. We shall return in a later paper to 
a detailed study of this problem. 

If we average (9) over the distribution dP ( r) 
given by Eq. (3) we get 

00 

Z = ~ Z(r) dP (r). (11) 
0 

To evaluate the potential energy U ( r) of the inter­
action between an ion and an atom for r ~ a0 ( ao 
is the Bohr radius ) we use the well-known solu­
tion of the Schrooinger equation for the molecular 
hydrogen ion.4 We can then neglect the screening 
of the perturbing ion. However, when 1/K > r » a0 

the potential energy of the interaction between an 
ion and an atom is evaluated by using the Stark­
effect perturbation theory. When r > 1/K the po­
tential U ( r) = 0. 

2. We write for the free energy of the neutral 
component in an external field 

Fa=- NakT In [(MkTj2nh2)'1•eVZ/Na], (12) 

where Z is given by Eq. (11), M is the proton 
mass, Na is the number of atoms, and V is the 
volume of the system. 

In the Debye approximation we have for the free 
energy of the charged component 

Fch = F id- f e3 V n!kTV (N, + N 1)'1•, (13) 

where Fid is the free energy of a perfect gas of 
electrons and ions and Ne and Ni are, respectively, 
the numbers of electrons and ions. We have not 
taken into account in Eq. (13) terms quadratic in 
the charged component density since the logarith­
mic term tends to zero for hydrogen (see refer­
ence 5), and the other terms give a small contribu­
tion. 

The condition of chemical equilibrium 

P.a = P.t + P.e (14) 

(where f.ta• f.ti> and f.te are respectively the chem­
ical potentials of the atoms, the ions, and the elec­
trons) leads, if we use (12) and (13), to the follow­
ing ionization equation: 

n;0;na = Z-1g; (mkT!2nh2)'1• exp {4e3 (2nneo)'l•j(kT)'I•}, (15) 

where g~ = 4. Equation (15) is the analogue of 
Saha's ionization formula (see, for instance, ref­
erence 6). In the derivation of the Saha formula 
one does not take into account that the free parti­
cles form an imperfect gas and the ionization po­
tential is essentially put equal to the perturbing 
potential, i.e., one assumes that only the ground 
state of the atom gives a contribution to the parti­
tion function of the neutral component. The ioniza­
tion potential obtained in the present paper takes 
into account the deviation of the electron and the 
proton gas from perfect gases. It is necessary to 
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change the ratio between the neutral and the 
charged components as compared to the one given 
by the Saha formula also because of the effective 
lowering of the ionization potential and because 
excited states of the hydrogen atom must be taken 
into account. 

The partition function Z is a function of the ion 
density, i.e., it depends not only on the tempera­
ture, but also on the density in the plasma. Con­
versely, the ion density depends on Z, i.e., it is a 
self-consistent problem. We obtain the equation 
of state by differentiating F = Fa + F ch with re­
spect to the volume, keeping T, Ne, and Na fixed: 

P = (na + 2n,0) kT --*e3 V2nlkTn%'+ kTna"A; 

"A=-alnZ/alnn,0 , O<"A<I. (16) 
Using (15) and (16) we get an ionization formula 

from which we can calculate the electron density 
(and the degree of ionization) for a given temper­
ature T and pressure P: 

n~0 (1 +'A) =z-Ig~ (mkT/2nn2)'1• [P/kT- 2neo 

+ ~ (2n)'l•e3 (n,0/kT)'I•] exp {4e3 (2nn,0)'1• (kT)'!.}. (17) 
For comparison we give here the usual Saha for­
mula for hydrogen: 

n~0 = t g~ (mkT/2nn2)'1• [P!kT- 2n,0]e-Io/kT. (18) 

3. We consider now some effects which may 
lead to an additional change in the atomic levels 
and thus to a change in the partition function. If 
because of the perturbation the electron makes a 
transition into a state with a sufficiently large 
principal quantum number (in our conditions "' 6 
to 10 ), the radius of its Bohr orbit will become 
appreciable. The electron then moves slowly be­
tween the atoms and the position is nearly the 
same as if a slow free electron moved through the 
gas. The presence of other atoms will change the 
energy of the excited state which we are consider­
ing on two grounds: firstly, the average potential 
energy of the field in which the electron moves is 
changed, and secondly, the bound proton will cause 
a polarization of the atoms. The result of these 
two effects is a shift in the level7 

(19) 

where a is the magnitude of the effective radius 
of the elastic scattering of slow electrons by a hy­
drogen atom and a the polarizability of the atom. 

One shows easily that in the range of tempera­
tures and pressures considered both these effects 
are small, i.e., 

(20} 

Account of the dipole-dipole interactions be­
tween the atoms also leads to an insignificantly 

small correction. To estimate the contribution 
from this interaction we can use perturbation 
theory. It turns out that this effect is comparable 
with the Stark effect only when 

(21) 

but this condition is known not to be satisfied under 
the conditions we consider here. 

4. To estimate Z we use a rough model. Let 

r+ oo, r < rl 
U(r)=\-Uo, ri<r<;;r2. (22) 

0, r > r2 

From Eq. (3) we then get 

{
0, 

dP (r) = dP1 (r), 
dP2 (r), 

r<;; r1 
r1 < r < r2. 
r>r2 

P2 = (i;Y exp {[1-exp (~; )] C:Y + ( ~~Y} exp [-u;n' 
PI = exp (kll_;) P2; (23) 

In (23) r 0 is evaluated from the equation 

4nnrV3 = 1. (24) 

However, r 0 is not the quantity that corresponds 
to the most probable value of the field F. The 
lower T, the greater the difference between that 
value and r 0• We estimate 

co 

Z = ~ Z (r) dP (r) 
0 

for ni = 10 17 cm-3 ( r 0 = 253.7) and kT = 1.1 ev. 
Using simple functions for Z ( r) we get approxi­
mately Z = 2.25 x 106• 

On the other hand, if we substitute in (9) the 
value r 0 = 253.7 we get Z = 2.15 x 106• 

From the estimate which we have just given it 
is clear that we can evaluate Z approximately 
from the equation 

Z = Z(ro) = 2 exp {k1; ( 1- ;~ )} 

=[1+1'exp{-k1;(1-~~)(l- .!.)}x2dx ]• (25) 

where m0 is given by Eq. (7). 
For actual calculations using Eqs. (16) and (18) 

one can use the following expressions to work with 

f'i';(l +'A)= (A!T'I•/Z)[A2PIT-2n, 

+ Aa(nefT)'I•] exp {A! n'{•JT'I•}, 

;;;a= [A2PIT- zl'i', + Aa (neiT)'I•] (1 +'A)-I, 

where 

(26) 

(27) 

(28) 
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P, I atm 

1 6.21·10-2 

2 0.153 
1 3 o:102 

5 6.12·10-2 
10 3.06·10-2 

1 0.148 
2 0.749 

5 3 0.510 
5 o:3o6 

10 o:153 
1 0.212 
2 1.446 

10 3 1:o:w 
5 0:612 

10 0.306 
1 0.262 
2 2.14 

15 3 1.53 
5 0,918 

10 0.459 
1 0.303 
2 2,78 

20 3 2.04 

AI = 1,1869 ·104, A:~ = 0,6125, 

Aa = 9,1281 ·10-2 , A,=0,2738; 

ne ~ n~o .J0-18 , na ~ na · J0-18, 

where we now must express P in atmospheres 
and T in electron volts. 

6.88·10-2 

0.154 
0.103 

6.13·10-2 
3.06·10-2 

0.176 
0. 752 
0.513 
0.306 
o;153 
0.259 
1.595 
1:029 
o:613 
0,307 
0.322 
2:29 
1;59 
0.919 
o:468 
0,378 
3.18 
2.09 

In the Table we have given values for neo cal­
culated from Eqs. (26) to (28) for different pres­
sures and temperatures. The calculation was per­
formed on an electronic computer. We also give 
for comparison the corresponding values for the 
electron densities in a perfect plasma, calculated 
with the Saha formula. 

We must note that the Debye approximation used 
here limits the validity of the theory to values of 
the electron density and the temperature which 
satisfy the well-known Kirkwood-Onsager inequality 

e2n~ofkT ~ 1. (29) 

5. Yamamoto8 has investigated experimentally 
the vanishing of spectral lines in a plasma which 
is caused by interactions in the plasma. The anal­
ysis of the experiment given by the author is in­
correct and we proceeded therefore. as follows to 
compare the results of the present paper with that 
experiment. We calculated from Eq. (26) the elec­
tron density ne0 for the values of P and T cor­
responding to the experiment and then for that 

5 1,22 1,23 
10 0,612 0.613 
1 0.484 0.662 
2 5.54 6,19 

50 3 s:o6 5.00 
5 3,06 3.05 

10 1.53 1,53 
1 0.688 1.021 
2 11.74 14.83 

100 3 10.06 11.69 
5 6.12 7.26 

10 3.06 2:99 
1 0.976 1,57 
2 20,15 23.02 

200 3 19.83 21.99 
5 12.23 14.06 

10 6.12 7,04 
1 1.55 2.89 
2 38.43 48.30 

500 3 47;69 53.46 
5 30.52 31.21 

10 15,31 15;49 

value of the density we used Eq. (7) to find the 
value of m0• This calculation gave m0 ....., 8 ( P 
= 1 atm, T ....., 1.5 ev ). The experimental value was 
mo = 7. We can clearly say that although such a 
comparison with experiment is an insufficient one, 
there is no discrepancy between the theory and 
this particular experiment. 

In conclusion I express my gratitude to D. F. 
Zaretskii for a discussion of the results of this 
paper. 
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