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By means of an approximate solution of the nonstationary Fokker-Planck equation, an explicit 
expression which includes effects of the nonlinearity of the phase oscillations, is obtained for 
the probability of electron loss. It is shown that inclusion of the nonlinearity leads to an in­
crease of the probability of electron loss, but this increase is quite insignificant and is of the 
order of unity, A simple approximate formula for calculating electron-loss probabilities is 
proposed. 

THE effect of the quantum nature of the radiation 
of electromagnetic waves by a beam of electrons 
being accelerated in a synchrotron on the phase of 
the alternating electric field at the instant an elec­
tron passes through an accelerating section is 
equivalent to the effect of white noise. As the re­
sult of the action of this noise, the phase can pass 
through an unstable value and the electron will 
then be lost. A knowledge of the probability of 
electron loss is necessary for the correct choice 
of the parameters of a synchrotron. Quite anum­
ber of papers have been devoted to this problem, 
for example references 1- 5. In some of them 
(cf. reference 1) the damping of the phase oscilla­
tions is not taken into account; in others a linear­
ized problem is solved and only the mean-square 
deviation of the phase from its equilibrium value 
is calculated (for example, reference 2 ); in still 
others there is an incomplete inclusion of effects 
of the nonlinearity of the phase oscillations (ref­
erences 3- 5). For example, in Matveev's 
papers3- 5 the value of the unstable phase is calcu­
lated with the nonlinear equation, but the statistical 
problem of the probability of reaching this unstable 
phase is solved by linearization of the original 
equation. Naturally such an approach can lead to 
errors, since the equation that describes the phase 
fluctuations is essentially nonlinear. 

In the present paper full account is taken of 
both the nonlinear character of the equation and 
the damping of the phase oscillations. As a par­
ticular example the data so obtained are compared 
with the results of Matveev. 3- 5 

As is well known, 1- 5 the equation for the syn­
chrotron phase oscillations is analogous to the 

equation of the physical pendulum with displaced 
equilibrium position: 

~ + y~ + F [COSIJl5 -cos (1Jl5 +'ljJ)] 

= ~~: [Ws- ~ e;b (t- t;)]. (1) 

Here lf! = cp - cp 8 , where 'Ps is the equilibrium 
value of the phase; 

) 2wr0 ( Es ) 3 
Y = (4 -a 3R m0c2 ' 

6R I R 
a= 6E1E' 

a is the spacing coefficient, R the radius of the 
electron orbit, Es the equilibrium value of the 
electron energy, r 0 = e 2/m0c 2, w = c/RA., A.= 1 
+ L/27Tk, L is the total length of the straight sec­
tions in the circumference of the synchrotron, k 
is the harmonic number of the high-frequency 
field at which the acceleration is produced, and 
V0 is the amplitude of the high-frequency field. 

The right member of Eq. (1) characterizes the 
emission of radiation by the electron and is as­
sumed to be small. The concrete conditions as­
sumed for this smallness will be indicated later. 
The first term in the right member of Eq. ( 1) is 
proportional to the equilibrium power radiated by 
the electron, 

Ws = 2ce2 / 3A.R2 (Es / tn0c2) 4 ; 

the second represents a random succession of 
short pulses, equivalent to white noise with the 
spectral density 

N = (k2w2a2 I ')..2£~) < e2> n, 
where < E 2 > is the mean square value of the en­
ergy of the emitted photons, and n is the mean 
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number of photons per unit time. The values of 
< E 2 > and n have been calculated by Matveev5: 

- 5 e2 E, 2 ( 55 ) (hc2e2' ( E s )7 < e ) = 24 lf3 , 'J..R3 ) moe' ' n=-----
2V3R h moe• ' 

Let us introduce a function U ( lj! ), which char­
acterizes the potential energy of the phase oscilla­
tions:* 

U(\jl) = Q2 [I-cos\jl +ctgqJ,(\jl-sin¢)1, Q2 = fsin <p,. 

The function U ( 1/J ) has extrema at the points 
1/J = 27Tn and 1/J = - 2cp s + 2rn, n = 0, ± 1, ± 2, . . . . 
We shall be interested in the positions of the max­
ima of U ( 1/J) that are closest to the equilibrium 
value 1/J= 0: ljJ 1 =- 2cps and ljJ2 = 2(7T- cps)· To 
these values of 1/J there correspond maximum 
values of U ( lj!) given by 

U (¢1) = 2Q2 [- <p, ctg <p, + I], 

U (¢2) = 2Q2 [(n- qJ,) ctg <p, + I I. 

If <Ps .c 1T/2, then U ( 1/Jd .c U ( lj! 2 ), and the lot~s of 
a particle occurs whenever the phase lj! reaches 
that one of the extremal values at which the max­
imum of U ( lj!) is the smaller. 

Let us rewrite Eq. (1) in the form 

(2) 

where 

s(t)= ~~: [W,- ~ei<'l(t-ti)] 
- ' 

is white noise with zero mean value. 
We now introduce a new variable Q to charac­

terize the total energy of the phase oscillations: 

Q=¥12 +U(\jl). 

Multiplying both sides of Eq. (2) by 1/J, we get an 
exact equation for Q: 

(3) 

If the damping coefficient 'Y of the phase oscil­
lations is small in comparison with the average 
frequency of the oscillations and if the emission 
of radiation is so small that 

t+~ 

( [ ~ ~s (t) dt])'', ~ U max 

t 

(here the brackets < > denote the statistical 
average, -and T is an interval of time of the order 
of the mean period of the oscillations ), then we 
can average the right member of Eq. (3) over the 
period. 

Generally speaking, the quantities <Ps• ')1, f2, 

and N are functions of the time, since as a parti­
*ctg =cot. 

cle is accelerated its energy Es changes, and 
consequently there is also a change of its equili­
brium phase <Ps· The radiation effect, however, 
is important only in the final stage of the acceler­
ation process, in which the change of energy oc­
curs very slowly, so that we can regard the quan­
tities Es and cps as constant over the period of 
the phase oscillations. Moreover, in many cases 
one is interested in motion of a particle along an 
orbit with constant energy, with the radiation loss 
on the average compensating the energy of the 
high-frequency field. 

Let us introduce the quantity ~2 averaged over 
the period (cf. reference 1): 

where 

,j,• = /l(Q) = h(Q)/ I2(Q), 

<~-max 

II(Q) = ~ V2 [Q- U('IJ))d'iJ, 
¢Jmin 

""max 

I2(Q)= ~ d¢/V21Q-U(¢)L 
Wmin 

(4) 

Here 1/Jmin and 1/Jmax are the extreme values of 
the phase in the oscillations, i.e., the two solutions 
of the equation U ( 1/J) = Q that are closest to 1/J = 0. 

Substituting the expression (4) in Eq. (4), we 
get an approximate equation for the energy of the 
phase oscillations: 

Q = -yfr(Q) +~£ (t). (5) 

This equation describes a Markov process, and 
consequently for the calculation of the statistical 
characteristics of Q we can use the Fokker-Planck 
equation: 

aw a 1a2 
7ft=- iJQ {[-yfi( Q) +a ( Q)J w} + 2 aQ2 lb ( Q)wl. (6) 

Here w ( Q, t) is the probability density distribu­
tion for the quantity Q; a (Q) = < ~~ (t) > is the 
mean value of the random process ~( t) $. which 
is different from zero because of the correlation 
between $ and ~ ( t ) ; and b ( Q ) is the spectral 
density of the process $ ~ ( t ). The quantities a ( Q) 
and b ( Q ) can be calculated by a method analogous 
to that given in the appendix to a paper by Strato­
novich.6 We get as the result: 

a(Q) =N/2, b ( Q) = N f 1 ( Q). (7) 

A knowledge of the nonstationary solution of the 
Fokker-Planck equation enables us to calculate the 
probability for loss of the electron. As has been 
stated, the electron will be lost if 1/J reaches the 
value 1j!1 or 1j!2, i.e., the energy Q exceeds the 
value Umax that corresponds to the smaller of 
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the values U ( lf!1 ) and U ( lf!2 ). Thus mathematically 
our problem reduces to that of the reaching of a 
boundary, and for the case of a constant boundary 
the approximate solution of this problem has been 
given in many papers. 

In the present paper we use the results of pre­
ceding papers, 7•8 and from these it follows that in 
the case of sufficiently small fluctuations of the 
radiation the number of electrons in the synchro­
tron should decrease with time according to the 
law n ( t) = noe -J3t, where j3 is the probability per 
unit time of loss of an electron. The quantity j3 
can be expressed approximately in terms of the 
stationary solution of Eq. (6) that satisfies the 
condition that the probability flux vanishes: 

(8) 

As is well known, the stationary solution w ( Q ) 
is of the form 

w ( Q) = {I~Q) exp {- 2 Z Q + ~ ,:~)} = C0 / 2 ( Q) e-2'1Q';9) 
Since for small fluctuations of the radiation 

w ( Q ) has a sharply marked maximum near Q 
= 0, for the calculation of C0 we can set f (Q) 
~ Q. This will be justified if N/yQ 2 « 1. Besides 
this we assume that N/')'Q 2 « Umax· Then, apart 
from a term ,..., exp (- 2 ')'Umax /N ), we get 

(10) 

Substituting Eqs. (9) and (10) in Eq. (8), we have 

~ = (y2 Q I 1tN) f 1 ( U max) exp (- 2yU max IN). (11) 

For comparison we shall calculate j3 in the 
case of linearization of the equation of the phase 
oscillations. Furthermore, as Matveev has done, 4 

we shall take the depth of the potential well from 
the nonlinear theory, and shall determine the per­
missible limits on the deviations in the framework 
of the linear theory from the requirement that the 
depths of the potential well be the same in the 
linear and nonlinear theories. Then for the calcu­
lation of j3 we need only set It( Umax ) = 7l'U max/fl. 
We then have 

~lin = (y2 U max/ N) exp (- 2yU max/ N). (12) 

As we see, the expressions (11) and (12) differ 
by a factor p, = QI1 ( Umax)/7l'Umax· A calculation 
shows that p, > 1, i.e., when the nonlinearity is 
taken into account we get a larger value for the 
probability of loss of an electron. 

In the general case the value of the quantity p, 
must be determined graphically, since one cannot 
get an analytic expression for It( Umax)· There 
is, however, one practically important case.-that 

in which the mean radiation loss per revolution is 
small in comparison with eV0 and the beam of 
electrons revolves in a constant orbit with con­
stant energy (the mean radiation loss being com­
pensated by the energy of the high -frequency elec­
tric field) -for which the value of p, can be cal­
culated analytically. In fact, in this case Umax 
= 2f2, Q = f, 11 ( Umax) = Sf, and consequently 
p, = 4/1!'. Calculation shows that also for other 
values of 'Ps the quantity p, is close to unity. For 
example, for 'Ps = 31!'/4 we have p, = 1.15. There­
fore it is probably suitable for practical purposes 
to use the simplified formula (12) and, if the cor­
rection is important, to introduce a correction 
factor p, = 1. 2. 

The expressions (11) and (12) are valid in the 
case of motion of the electron along an orbit with 
constant energy. If the energy of the electron is 
changing, but so slowly that during the time in 
which a stationary distribution is established (a 
time of the order 1/'Y) it does not change much, 
the expressions (11) and (12) remain valid, except 
that we must regard j3 as a function of the time. 
In this case the number of particles in the synchro­
tron falls off with time according to the law 

t 

n (t) = n0 exp (- ~ ~dt). 
0 

In the case in which the change of energy of the 
electron is not slow, one can use the method of 
majorants. 4• 5 
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