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A five-parameter analysis of the experimental data on pp-scattering at 95 Mev (cross sec­
tion, polarization, depolarization) is performed by a new numerical method (the "ravine" 
method). We obtain a broad complex range of solutions, which cannot be described by 
specifying the local minima and error matrices as in the well known ''local'' technique. The 
region obtained can be divided into two comparatively small regions by including some data 
on rotation of polarization R, obtained by extrapolating from energies of 150, 210, and 310 
Mev. 

1. PHASE-SHIFT ANALYSIS PROCEDURE 

AT the present time the universally adopted pro­
cedure for processing of experimental data, par­
ticularly the phase-shift procedure, is as follows. 
We minimize the square of the deviation 

(1) 

where y ( 6) are the theoretical data (cross sec­
tions, etc.) as functions of certain parameters 
(phase shifts) 6 = o 1, 62 ••• , 6n, subject to de­
termination from corresponding experimental data 
Ye (~e- experimental errors); the sum extends 
over different points on the specified curves. The 
problem thus reduces formally to a determination 
of local minima of the function (1) in many-dimen­
sional space of the parameters 6 (the phase 
space), for which we usually employ the method 
of gradient descent from a series of randomly 
drawn points. The local minima obtained are 
called solutions, and their accuracy is specified in 
terms of an error matrix, which outlines certain 
many-dimensional ellipsoids in phase space (see, 
for example, references 1- 4). 

In the simplest cases the solution obtained in 
this manner can give a correct idea of the phase­
space regions that satisfy the experimental data. 
However, if the number of dimensions and surfaces 
(1) is large and the surfaces have various undula­
tions and troughs, the method is laborious and 
does not provide a sufficient assurance that all the 
regions with small values of x2 has been deter­
mined. This is not surprising, for two reasons: 

1) It is difficult to trace a function that has 
essentially different values in a tremendous num­
ber of points. Thus, for example, in nine-para­
meter analysis with a range of variation - rr/2 

« 6 « rr/2, with a spacing of 0.1-0.2, the num­
ber of points to be investigated for each phase is 
10 10 -1014• 

2) In any case of considerable complexity, the 
method of gradient descent is unjustifiably cum­
bersome, since it forces us to trace the most 
minute details of the relief, details which usually 
have no physical meaning, and we cannot extricate 
ourselves from individual 'cavities' in which we 
"get stuck." In addition, the method is essentially 
suitable for finding those individual cavities (local 
minima) which have usually the sense of a sort of 
'fine structure' in broader regions containing low 
values. 

Thus, instead of finding local minima it is de­
sirable to carry out a direct "probing" of the 
phase space in order to find the entire region with 
low values of x2 and to obtain a more complete 
and accurate idea of the possible values of the 
phase shift. However, a direct "probing" of an 
entire phase space with a large number of dimen­
sions is impossible in practice, and we must there­
fore use a method which works predominantly in 
regions with low values of x2• In this problem we 
use for this purpose a new numerical method (the 
method of "ravines") proposed by Gel'fand (more 
details about this method will be published separ­
ately). A characteristic feature of this method 
are "jumps" of finite length along the "ravines" 
of low values of x2• If the network of "ravines" 
is not too badly tangled up, this method yields 
relatively rapidly all regions with low values of 
x2• This situation obtains in "well organized" 
functions, such as the many-dimensional functions 
usually encountered in practical problems. 

To complete the analysis we must choose some 
criterion for solving the problem. We use the 
simplest method of drawing the obtained points, 
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assuming the solution to include all the regions of 
the phase space with values x2 ( 6 1....::§ x2max-_!n 
this problem we assume xinax = 2x2 where x2 is 
the mean mathematical expectation. By plotting 
the theoretical curves corresponding to the phase 
shifts obtained in this manner we can ascertain 
that they agree sufficiently well with the experi­
mental points. 

We do not give a more detailed analysis of the 
region of solutions for the following reasons. Re­
gions with low values of x2 are large and complex, 
and therefore any attempt to describe them by 
specifying the local minima and the error matrix, 
as is customary in the old procedure, may lead to 
a loss of large regions in which the true solution 
may be located. Upon sufficient improvement of 
the experimental data (improvement of the set of 
data through supplementary polarization ex peri­
ments or by reducing the errors), the form of the 
surface (1) apparently becomes simpler and is 
converted into a certain small number of suffi­
ciently narrow, clearly separated "troughs" of 
paraboloidal type. In this case it would be easy to 
investigate in detail the regions for solution and to 
find reliable limits. Further, the existing experi­
mental data contain many systematical errors. 
Thus, new data on the cross section for 98 Mev 
(Harwell) differ greatly in a certain range of 
angles from those used in this investigation 
(Harvard). An analogous situation takes place for 
depolarization at 150 Mev. This leads to a certain 
distortion and to a shift in the level lines in phase 
space. 

In making up the squared deviation (1), all the 
phases corresponding to large orbital momenta 
were considered in the one-meson approximation 
(with meson-nucleon constant g2 = 14.5 ), as pro­
posed in reference 5. The choice of values of 
momenta, starting with which the phase becomes 
"fixed" in the one-meson approximation, is based 
on estimates of the two-meson corrections ob­
tained by Galanin et al. 6 

2. ANALYSIS OF DATA FOR 95-98 Mev 

We processed the data on the cross section 
u ( 9) and polarization P ( 9) for fourteen scatter­
ing angles 7 jointly with data on depolarization 
D ( 9) for five scattering angles. 8 The independ­
ently varied parameters were five proper phase 
shifts with allowance for the Coulomb interaction 
(called BB shifts by Stapp et al. 2), viz: 60 ( 1s0 ). 

o2( 1D2), o~( 3P0 ). 6}( 3Pd. and 6~( 3P2>· 
In the determination of the phase shifts E 2 ( 3P 2 

- 3F2) and o~( 3F2 ), connected with 6~, it is nee-

essary to take into account the fact that the one­
meson approximation gives only the real parts of 
the scattering matrix. For this reason we speci­
fied in the one-meson approximation the following 
matrix elements5 

~2 = R.e [S~. 3/2i], 

( .P3 - Coulomb phase), which leads to the rela­
tions* 

sin 26~ = 2TJi + sin 2¢3 - 2~2 tg e2• 

Starting with the state 3F 4, all the contributions 
were taken into account in the form of a closed 
sum (one-meson amplitudes), and the imaginary 
parts of the scattering matrix were thus neglected. 

As a result of the analysis we obtained a large 
complex region of solutions, which cannot be de­
scribed by specifying the local minima and error 
matrices. We obtained several hundreds of points 
with x2 ::::: 2x2 <7 = 28 ), which lie within the limits 

FIG. 1 
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Certain solutions (points) from 
the resultant region of phase 

space (in degrees) 

ll x• i'S, ''D, I 'P, I 'P, I 'P, 

1 25 20,3 6.0 14.4 -11.5 13,2 
2 44 23,5 4.0 24,1 -8.7 12.5 
3 59 20.2 6.8 3.7 -14,9 11.8 
4 24 9.8 -3.5 26.0 -2.6 15.3 
5 24 -16,9 7.2 -13.5 7.0 15.8 
6 37 -20.5 -1.7 0.5 -10,6 13.8 

I 

or-5~~7-~~~--~~~--=~~--~--~--~--~.r~' 

-0.5 

D ( 8) and rotations of polarization R ( 8) and 
A ( 8 ). Figure 2 shows also the experimental 
curves. 8 We do not give the curves for the cross 
section and polarization, for in practice the vari­
ous solutions merge, within the limits of experi­
mental errors, and differ somewhat in the inter­
ference region 8 l'::l 10°. 

FIG. 3 

Figures 2 - 4 show that a measurement of 
D ( 8) for 8 l'::l 120° and R ( 8) for 8 l'::l 30 and 
120° would bring us much closer to a single­
valued solution with relatively low tolerances in 
all the phases. Extrapolating the available data 
for R ( 8) at energies 150, 210, and 310 Mev, we 
can assume that for 95 Mev the rotation of the 
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polarization R ~ - 0.2 at () ~ 30°. The addition 
of such data would shrink and sharply demarcate 
the foregoing regions and would yield two relatively 
small regions (two solutions): 

In particular, only points with a positive 1D 
phase shift, o2 ~ 4-8°, would remain. We note 
that both solutions differ little in cross section 
and in polarization in the interference region. 

For the foregoing solutions we obtained con­
tinuations in the region of high energies -solutions 
I and II for 150 Mev9 and solutions I and II for 
310 Mev,3 respectively. 

In carrying out the phase-shift analysis, we 
also undertook to ascertain whether it is possible 
to obtain from the available experimental data the 
"peripheral" phases, for which the main contri­
bution should be made by the one-meson approxi­
mation, and to verify thereby the correctness of 
the estimate of the accuracy of the one-meson ap­
proximation, obtained by calculating the two­
meson phases (see reference 6). For 95 Mev we 
can already regard as peripheral the F phase 
shifts and the mixing parameter ~ 2, which for 

this reason were 'fixed' in the one-meson approx­
imation. However, the analysis was repeated 
with varying these phase shifts (four additional 
parameters). With this, the dimensions of the 
solution region increased and very low values 
x2 ~ 10 were obtained at the minima (with x2 

= 24 ). To illustrate the permissable tolerances 
in the 3F phase shifts we give one point with x2 

= 26: 

'00 =21.1°, 02 =6.1°, 0~=3.2°, 0~=10.1°, 

0~ = 8,9°, S2 = 4,3° (- 3.4°), 11~ =- 11.8° (0.8°), 

0~ = 6.3° (0°), 11~ = 2.3° (0.3°). 

(the parentheses contain also the theoretical 
values of ~ 2 and 3F phase shifts assumed in the 
five-parameter analysis). 

The results obtained allow to conclude that it 
is impossible to obtain with any degree of relia­
bility the values of ~ 2 and 3F shifts from the 
available data, and it can only be stated that the 
one-meson values for these phase shifts do not 
contradict the experiment. 

We note in conclusion that of the two regions of 
solutions indicated above, region I is preferred 
since it is characterized by positive values of the 
1S phase shift, and this agrees better with the 
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positive 1s phase at lower energies, where the 
effective scattering length approximation can be 
employed. 

The authors are grateful to M. A. Evgrafov and 
I. I. Piatetskii -Shapiro for help in the development 
of the procedure, to Ya. A. Smorodinskii for dis­
cussions and useful remarks, and to S. L. Ginz­
burg for help in the calculations. 
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