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The problem of the use of an arbitrary gauge of the electromagnetic potential of quantum 
electrodynamics within the framework of the dispersion method is considered. Several for
mulae are obtained which are generalizations of known expressions. 

IT is well known that owing to gauge invariance of (the structure of the operator is that of the energy-
quantum electrodynamics all physically meaningful momentum 4-vector Pp, ), from the requirement 
quantities are independent of the gauge of the elec- of a positive energy and from translational invari
tromagnetic potentials. However there exist quan- ance: 
tities in the theory which are not independent of 
the gauge, like, for example, the propagator, the 
vertex function, and diverse matrix elements. It 
is therefore desirable to discuss them in a general 
gauge. In particular, this facilitates the evaluation 
of these quantities. 

In the dispersion method such an approach is 
difficult since there exists no unique method which 
would allow to determine the dependence on the 
gauge for a number of quantities. In particular, 
when writing matrix elements in covariant notation 
the summation over intermediate states, e.g. in 
reduction formulae, are usually carried out in the 
diagonal gauge ( dz = 1 ). 

In the present paper* we shall study the system
atic treatment of an arbitrary gauge in the disper
sion method. 

1. It is well known that the quantized vector 
potential of the free electromagnetic fieldt whose 
Lagrangian is given by 

L (x) = _ _!_ aAP. (x) ~AP. (x) 
2 ax" ax" 

can be written in the form 

Ap.(x)=(2nr'1'~d4kV2k06(k0) 6 (k2) e~ 

+ e-ikxC}: (k)}, 

(1.1) 

(1.2) 

while the commutation relations for the operators 
c~ ( k) follow from the form of the Lagrangian 

*The basic results of this work have already been utilized 
in a previous paper1 by the present authors. 

tDue to the gauge invariance of the S-matrix (see reference 
2, p. 247) the results obtained below are valid also for inter
acting fields. 

8Ap. (x) I 8x" = i IPv, Ap. (x)l. 

The operator Ap, (x) is determined up to a 
gauge transformation 

Ap. (x) .-A~ (x) = A.,. (x) + 8f (x) I axv·, 

(1.3) 

(1.4) 

where f ( x) is, generally speaking, an arbitrary 
operator function. Expressing Ap, (x) in terms of 
A~ ( x) by means of the implicit equation (1.4) and 
inserting in (1.1) we obtain 

L (Ap. (x)) = L' (A~ (x)), (1.5) 

where L' indicates the change in the form of the 
Lagrangian induced by the gauge transformation 
(1.4). As a result of the change of L (x) the equa
tion for Ap, ( x) changes into 

OA~ (x) = - 80f (x) I 8xP-. (1.6) 

We note that in a gauge transformation both the 
change of Ap, ( x) to A~ ( x ) and the change indi
cated by (1.5) has to be considered in order to 
maintain the original quantization scheme, i.e., 
the meaning and the commutation relations of the 
operators c~ (k). In particular, then also the form 
of the energy-momentum vector Pp, remains un
changed. 

We now are going to find a class of functions 
f ( x) which obey the following conditions: ( i) the 
operators A~ ( x) are Hermitian; ( ii) the opera
tors A~ ( x) are translationally invariant: 

aA~(x)/axv = i IPv. A~(x)l; (1.7) 

(iii) the gauge transformation (1.4) has to lead to 
the known expression for the photon propagator 
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(1.8} 

where the range of the quantities dz has to include 
at least the values dz = 0 and dz = 1. These cor
respond to the important cases of the transversal 
and diagonal gauge respectively. 

These requirements substantially restrict the 
form of f ( x ). As can be easily seen, (1. 7) leads 
to a linear dependence of f ( x) on the field opera
tors. Condition ( i) restricts f ( x) to the class of 
functions of the form 

at (x) I ax~'- = (2nr''• ~ d4k V2fo 6 (ko) 6 (k2) 

x kp. (e.,.k) f ± (k2) [eikxc~ (k) ± e-'kxcA (k)], (1. 9) 

where f+(k2 ) and if_ (k2 ) are arbitrary real func
tions. Condition (iii) allows to connect f± (k2 ) 

with the longitudinal part of D/Jv(k). We obtain 
immediately (see reference 2, p. 259) 

and the requirement dz ::::: 0 eliminates the second 
possibility. 

From (1.9) and (1.10) one sees that 
80f(x)/8x:/J ~ o, and thus (1.6) differs consider
ably from the equation for A/J ( x ). We do not con
sider here the specialized gauge transformation 
with 0 f ( x) = 0. 

The relations (1.2), (1.4), (1.9), and (1.10) allow 
to write A~ ( x ) in the form 

A~ (x) = (2n:)-'/, S d4k V2k0 !l(ko} 6 Wfe~(k) {ifkx c;,(k) 

+ e-ikx CJ: (k)}, 

where 

(1.11) 

ciated with a change in the unphysical part of 
At! (x ). 

We can thus say that a gauge transformation 
which obeys the above specified conditions turns 
out to change the polarization vectors e~ into 
e~ in the expansion (1.2) of the operators A/J(x) 
in terms of the operators c~ ( k ). In the following 
we shall omit the prime in A~ ( x ). 

It is easy to see that the dependence of matrix 
elements on dz when separating them out from the 
dependence on photons is exactly the same. For 
example, the matrix element < a I F I {3; k A > of 
an arbitrary operator F (the indices k and A de
note a photon of momentum k and polarization A) 
in the diagonal gauge due to considerations of co
variance can be written in the form < a I F I {3; kA. > 
= e~ F /J. After a gauge transformation this changes 
to <a1Fif3; kA>=e~(k}F/J(dz). Incase of 
gauge invariance of F /J the whole dependence of 
the matrix element < a I F I {3; kA.> on dz is con
tained in e~ ( k ). 

2. When investigating matrix elements it is 
frequently necessary to bring them into a covari
ant form. The use of an arbitrary gauge intro
duces certain changes into the expressions which 
give the operators c~ (k) in terms of A/J ( x ). One 
can easily show that --;. (k) ± (k) - :d 1 ~ d +ikx a A ( ) e~'- c;. - --,-1 ,r- xe a·"' ~'- x . 

(2n) • r 2ko ..,-
(2.1) 

In order to split off c~ ( k) we introduce the vec
tors e~ ( k) which are taken to be orthogonal to 
e~<k>: 

e~ (k) = e~ +kp. (e>-k) k-2 (I I Vdz- 1). (2.2) 

Indeed, 
-;. -;. 

(1.ll') ep. (k) e. (k) = 6p..; (2.3) 

The pole k2 = 0 in the integrals of the form 

~ d4kcp (k) 6 (k2)/k2 

is understood to be taken as a principal value. In 
actual calculations it is convenient to utilize 

Px-16 (x) = - 6' (x). 

We note that due to 

aA~± (x)/axor = Vlft aA: (x)/axl'- (1.12) 

the admissible states remain unchanged, and the 
relation 

(1.13) 

insures the correspondence with Maxwell's equa
tions. Indeed, one sees from (1.13) that the ap
pearance of dz in the propagator DIJv(k) is asso-

From (2.1) and (2.3) we obtain 

± (k)- + i 1 ->. (k) ~ d +lkx 7/ A ( ) (2.4) c"A - --,1- ,l'i"L e,. xe (iU "' x . 
(2n) • r 2k0 x 

This way one has to exchange the polarization 
vectors e~ for e~ ( k) in the usual reduction for
mulae when one goes to arbitrary gauge. 

However, it is more convenient to use (2.4) in 
a somewhat changed form, namely, in terms of 
efl instead of e~ (see the concluding remarks of 
section 1.). Using the relation 

e; (k) = e~ (k) + k,. (ei. k) k- 2(I!Vdz- Vdz>, (2.5) 

we obtain from (2.4) 

± i 1 - ~ 1 C;. (k) =+ --, -=ei. (k) dxe+ikx -Ap.(x) 
(2n) 1• v 2ko p. ax0 

- i kl'- (e)'k) ( 1 - ) a 
+ (2n)'l• V zk. ----;ti- Vd;" - V dt, ~ dxe+ihx ax" A"' (x). 

(2.6) 
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When utilizing (2.4) and (2. 6) to bring matrix ele
ments into covariant form there appear different 
Green's functions which can be expressed in terms 
of G, Dp,v and r W These, and also the second 
term of (2.6) can be brought to a simpler form by 
means of the relations3 

kl'- Dl'-• (k) = - k.dz!(k2 + ie) , 
k~'-r~'-(p, P -- k) = o-1 (p)- o-1 (p- k). (2. 7) 

3. In the dispersion method, frequent use is 
made of expansions into intermediate states, in 
which the eigenfunctions of the free field energy
momentum operator are taken as the complete set 
of states. In quantum electrodynamics such a set 
of intermediate states is taken which besides the 
transverse photons contains also the longitudinal 
and scalar photons. Therefore in the sum over 
intermediate states 

<cxiABI~> = ~<cx!A !n><niBI~> 

the summation over the polarization A. goes from 
0 to 3. Writing the matrix elements of A and B 
which contain the polarization index in arbitrary 
gauge in the form 

~ (k)A~'-' 

we find that instead of e~e~ = Op,v there appears, 
according to (1.11'), 

-e~ <k> ~ <k> = <~~~-·;- k~~-k.lk2) + d~k~~-k.fk2 • 

In conclusion the authors express their deep 
gratitude to V. Ya. Fa1nberg and E. S. Fradkin for 
stimulating·discussions and continuing interest 
in the work. 
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