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A new definition of the commutation function is proposed. Nonlinear meson fields are con­
sidered and, in particular, an expression for the commutation function is presented. 

THE usual definition of the commutation function 
of the boson field 

D (s) = (if (x), 11' (x')L (1) 

[where '11 ( s) is the sum of solutions over the wave 
vector k] cannot be used in the nonlinear theory, 
in view of the violation of the superposition princi­
ple. The right half of (1) now depends on the wave 
vector. We therefore propose to start at the very 
outset from the more general definition 

D (s) = ~ ~ ~·[Wn,oo(O), \fk'o,.(X- x')L. p (k, w) p (k', w'), 
ll,oo k'oo' (2) 

where p (k, w) is a certain weighting function. 
The summation ~' is over the physically ad­

missible independent wave solutions of the field 
equation. In the particular case of the linear 
theory, where p (k, w) = 21 w lo (k~), we obtain 
the well-known result (1). In the case 

lf11 (x) = ak<pn(x), 

we obtain from (2) 

D (s) = ~ L;' TJ (k, ro) <pk (x- x'), 

"·"' 
l'] (k, w) = f (k)<pk (0) p(k,w), 

where cpk ( x) is the wave solution. 

(3) 

(4) 

In the linear theory the function D ( s) is, for 
any value of p ( k, w), a four-dimensional radially­
symmetrical solution of the field equation, made 
up of the wave solutions. In the case of nonlinear 
theory this is possible only for a very special 
choice of p ( k, w ). In particular, the simplest 
choice of the function 21 w lo (k~) for p (k, w ), as 
will be shown later, is found to be unsatisfactory. 

If we consider a neutral meson field, obeying 
the equation 

(5) 

for which it is natural to take the commutator be-

tween the functions cpk ( x) and cp -k ( x) [in non­
quantum theory cpk (x) = cp_k (x )], then its energy 
can be represented in the form 

(6) 

Calculating further the time average of the energy 
(with k0 = 0) we obtain1 ( C = % ): 

We introduce the canonical coordinates 

qk = a,.exp (- iQ"t), 

Q_k=- Qk, 

Under the assumption 

[qk' q_kl_ = f (k) 

we obtain 

Pk (t) = ~ Q"q~, 

From this we get 

[Qkqk, q,.l_ = [Qkq~. q~l_ = 0, 

(7) 

(8) 

(*) 

(9) 

IQ,.q;, qkl_ =- [Q"qk,q;L =- 2/C. (10) 

Under condition (*), which is equivalent to the 
approximation [ ak, a_k] + RJ 2a~, i.e., to neglect 
of the quantum character of this expression in the 
formulas for ~ and Qk, we obtain 

f (k) =2/CQk a"==~" V21C I Q" I, a_"= S-k V21CI Q-11!, 

Is~<, L,.L = I. (11) 

Let us attempt now to calculate the sought com­
mutation function D ( s) by means of formula (2), 
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using (3) and (11), and assuming p (k, w) to have 
a form analogous to that of the linear case 

p (k. Qk) = o ( Qlt + vk2 ++~~) 

+o(Q"-Vk2 ++~~). 
(12) 

We then obtain 
()() 

an = (2n + l) f...ak const, 
n=O 

An= A(n), (13) 

where Dz ( s) is the commutation function of the 
linear theory. 

The result obtained, in view of the known diver­
gence of the linear function Dz ( s ) , is unsatisfac­
tory (from the point of view of constructing a 
complete field theory). This does not apply, how­
ever, to the expressions (2) or (11). Within the 
limits of assumption (*) Eq. (11) is valid, and we 
shall make use of it, as well as of (2). What is 
unsatisfactory is the choice of the form (12) for 
p(k, w). 

Inasmuch as we expect no divergences in the 
linear theory, we must review the definition of the 
nonlinear commutation function. In this connec­
tion we assume that the commutation function is a 
four-dimensional radially-symmetrical solution of 
the field equation not only in the linear but also in 
the nonlinear theory. If we start from such an as­
sumption we obtain for the weighting function 
p ( k, w ), subject to assumption (3), as the main re­
sult of the present investigation, a Fredholm inte­
gral equation of the first kind. 

D (s) = (2nf4 ~ ~· (Wh(O), 'l'~t(X-x')]_p (k, w)d3kdw. (14) 

Here D ( s ) is a radially-symmetrical solution of 
the nonlinear equation of the field. 

The summation :E', as already indicated, is 
carried out over the physically admissible inde­
pendent wave solutions "IJ!k (x ). Thus, Eq. (14) 
establishes with the aid of the function p ( k, w ) 
the connection between the wave solutions and 
radially-symmetrical solutions of the nonlinear 
field equation. 

The condition imposed on (14) is 

D(O) = 0, ~ p (k, w) d3kdw = l. (15) 

In this connection, let us analyze in greater detail 
the radially-symmetrical solution of the initial 
nonlinear generalized Klein-Gordon equation (5). 

Equation (5) has in the real domain two inde­
pendent wave solutions 

q> =q>0 en (k~\. + c1; k1). 

q> = q>0 sn (k~2) Xv- + c2; i I k2l) 

(1) v-- !jlo sn (kl'- xl'- + 2c2 ; k1 ) 

- V2 dn (k~1 >xl'- + Jl2c,; k1) ' jk21 = I, 

where k(t) = {2k( 2l. 

As wf:ve solutfons, both solutions are physically 
admissible. However, Eq. (5) has two independent 
radially-symmetrical solutions, corresponding to the 
two independent wave solutions mentioned, namely 
cn(u) and sn(u). The radially symmetric solu­
tion corresponding to sn( u) is in this case com­
plex (when "A > 0 and s 2 > 0 ). In this connection 
we neglect both the radially-symmetrical solution 
corresponding to the wave solution sn( u) and the 
wave solution sn( u) itself. The real radially­
symmetrical solution of Eq. (5) is given by the 
following formulas (see reference 1) 

where k1 and k2 are the moduli of the correspond­
ing elliptic functions. 

When k2 = 0 and k~ = 1 we have 

q> (s, k 2 = 0) = tl A.:~ (7) , 
2 (2 1 

q> (s, k2 = l) = 1' 21 J_ ( I )'. V !..so ' s so 
(17) 

This last particular solution was used by Bor­
gart as a commutation function. 2 

In the region 0 < k~ = k1 2 :s 1 we have k2 
= -../ 1 - k~ :s dn ( u) :s 1, and therefore the function 
tends to zero only as s - oo. On the other hand, 
in the region 'l2 < ki < 1 the function en( u) exe­
cutes infinite oscillations as s- 0, and we can 
put 

!p (0, kl) = 0, (18) 

This behavior of the proposed commutation 
function, which falls off like 1/s as s- oo and 
which vanishes on the average as s- 0, corre­
sponds very closely to the conditions imposed by 
Heisenberg3 on the commutation function of the 
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nonlinear spinor field. Therefore our commuta­
tion function can be employed in analogous prob­
lems. 

Thus, for D ( s) we can take a radially-sym­
metrical solution of the form (16b). With this the 
integral equation (14) can be simplified by ap­
proximately replacing the elliptic functions with 
trigonometric ones. We then obtain for the weight­
ing function the expression 

(k ) _ const ~ ( ln (s0fs) ) d•x (19 P , w - 1 1 cos V cos (k"x") - , ) 
ah, a_k- 2k~-1 5 

where [ ak, a_k J _ can be determined from (3) and 
(11). 

The results obtained can subsequently be used 
for specific calculations, by obvious generaliza­
tion to the case of other boson and spinor non­
linear fields and by establishing a connection with 

the Greenians and other singular functions. 
Note added in proof (March 12, 1961). A simi­

lar suggestion is made by H. Mitter in the case of 
a spinor nonlinear field. We are grateful to him 
and to H. P. Diirr for supplying us with a preprint. 
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