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The quantum dispersion equation is found for the longitudinal oscillations of an electron gas 
in a magnetic field, for the case of an arbitrary energy distribution of the particles. A 
criterion (with respect to the magnetic field) for the applicability of the hydrodynamical 
approximation is established. It is shown that as we go from very high magnetic field 
strengths to low fields the frequency of the longitudinal oscillations changes discontinuously. 
The longitudinal permittivity of a plasma is calculated. 

THE classical kinetic theory of the oscillations of 
ar1 electron plasma in a homogeneous magnetic 
field has been studied by many physicists. 1 In all 
of the papers devoted to this problem it has been 
assumed that there is a Maxwell distribution of 
the electron velocities, and no account has been 
taken of the quantization of the orbital motion of 
the electrons in the magnetic field. The quantum 
theory, also with a Maxwell distribution function, 
has been considered by Bonch-Bruevich and 
Mironov.2 They found small quantum corrections 
to the well known classical results. Effects of a 
fundamentally quantum nature were not considered. 
Yakovlev and Kalyush3 have used the quantum 
kinetic equation as the basis for a treatment of the 
oscillations of an electron-ion plasma in a magnetic 
field with arbitrary distribution functions, but the 
quantization of the orbital motion in the ground 
state was not taken into account, and therefore 
their dispersion equation is not valid for the study 
of the effect of the quantization of the orbital motion 
of the electrons on the spectrum of the oscillations. 
The study of these effects is the main purpose of 
the present paper. 

The classical description of a plasma in a mag­
netic field is admissible only under the weak-field 
condition, which corresponds to large values of the 
quantum number n that quantizes the motion of an 
electron in the magnetic field; more exactly, the 
classical description is valid as long as the 
quantum energy satisfies liwc « E0 ( E0 is the 
energy of the random motion of the particles). In 
the case tiwc ::: E0 small values of the quantum 
number n play an important part, and therefore 
one must use a quantum description of the motion 
of the particles, but one can still treat the electro-

magnetic field in the plasma by classical theory. 
In the first section of the paper we give the 

method for finding the quantum dispersion equation 
for electrons in a magnetic field. In the second 
section we give an essentially quantum -theoretical 
analysis of this equation. At the end of the paper 
(the third section) we calculate the longitudinal 
dielectric constant with an arbitrary energy distri­
bution of the particles. 

1. As is well known, the longitudinal and trans­
verse oscillations of a plasma in a magnetic field 
cannot be separated, but neglect of the retardation 
in the propagation of the electromagnetic field 
allows us to make the separation. Small longitu­
dinal oscillations of an electron plasma in a mag­
netic field can be described by means of linearized 
equations with a self-consistent field, which have 
been extended in a paper by the writer4 to the case 
of nonstationary states. If in Eq. (3) of that paper 
we neglect force correlations at small distances 
and nonlinear terms, the equation is equivalent to 
the usual equation of motion for the density 
operator 

(1) 

where {J is a small correction to the unperturbed 
value p0, and V is the self-consistent potential, 
which is a functional of p. 

In the case of a homogeneous magnetic field 
directed along the z axis, the Hamiltonian 
operator of an electron is 

• 1 (' e )2 
3to = 2m P - c A ' A= {-Hy, 0, 0}. 

Next, following the work of Ehrenreich and 
Cohen, 5 we use Eq. (1) to find the equation of 

(2) 
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motion of the matrix elements of the operator p, 
which describe.s the transitions between the sta­
tionary states of the system with V = 0. The wave 
function I kx, kz, n> in the Landau representation 
is an eigenfunction of the operator ie0: 

ito I kx, kz, n) = Ekz. nl kx, kz, n ), (3) 

where 

eH 
w -­c- me ' n=O, 1,2, ... , 

cl>n ( y) is a normalized oscillator wave function, 
and a 2 = n/mwc. 

By means of Eq. (2) we get the equation of mo­
tion for the matrix elements of the operator j3 0: 

(ina I at +Ekz+qz· n- Ekz· n) 

X <kx, kz, n I il kx + qx, kz + qz, n') = {fo (Eitz+qz, n) 

the wave functions cl>n(Y) and cl>rr(Y + a2~) out 
from under the integral sign, and integration of 
the rest of the integrand gives the o function of 

'Yy· 
An analogous approximation is made in finding 

the dispersion equation for the oscillations of a 
plasma in a periodic field of ions (cf. e.g., the 
papers by Kanazawa6 and by Ehrenreich and 
Cohen 5 ). A 

Let us express V ( q ) in terms of the matrix 
element of the operator p, using Poisson's 
equation: 

~v = -4neW (r), N (r) = Sp {1\ (r- r') p (r')}. (9) 

Calculating the trace by means of the eigenfunc­
tions (4) and using Eq. (8}, we find 

V (qx, 0, q) = G (qx, 0, q) 

X (xx, X 2 , n"/ plxx + qx, X 2 + q2 , n"'), 

G (qx, 0, qz) = 4n:e2 (q~ + q;)-1. (10) 

(5) Using Eqs. (10) and (8), we rewrite Eq. (5) in 

In obtaining Eq. (4) we have taken into account the 
well known property of the unperturbed operator 
f3o: 

where f0 (E) is the energy distribution function of 
the particles. 

Let us expand V ( r) in Fourier series and 
transform the matrix element of V ( r) that appears 
in Eq. (5) to the form 

<kx, kz, n I~ v <r> e-iyr 1 kx + qx, kz + qz, n' > 
y 

= ~ v (qx, qz, r y) (kx, n I e-iYyY I kx + qx, n' ), (7) 
y!i 

where 

k I -iy y I k I ' ) 1 
( X> n e y X I qx, n = CX 

To obtain the dispersion equation it is necessary 
to make in Eq. (7) an approximation which is 
equivalent to the approximation of "random 
phases," namely, 

2J V (qx, qz, ot) (kx, n I e-iYyY I kx + qx, n') 

(8) 

This approximation admits of the following in­
terpretation. In <kx, n I e-i'YyYI kx + ~, n'> one 
takes the average value of the overlap integral of 

the form 

(i!ift + Ek2 +qz, n'- Ekz, n) 
X <kx, kz, n I pI kx + q x' kz + qz, n' > 

= <to (Ekz+qz' n') - fo (Ekz· n)} <kx, n I kx + qx, n' > 

X G (qx, 0, q) <xx, xz, n"] PJxx 

From Eq. (10) there follows as the dispersion 
equation for the longitudinal oscillations of an 
electron plasma 

X [fo (Ekz+qz,n') 

- fo (£k2 , n)] [£kz+q2 , n•- Ek2 , n -liw + i/iy]-1. 

(11) 

(12) 

According to reference 7, for n' :::=: n the two­
center integral that appears in Eq. (12) is given by 

Fnn•(a.qx) = <kx, nlkx +qx, n') 

= (n! In' !)'I• exp {- (a.qx I 2)2 } 

X(- a.qxf V2)"'-nL~'-n (a. 2q';l2), (13) 

where Lfi is the associated Laguerre polynomial 

d" 
L~ (x) = (n!)-1exx-a dx" (e-xxn+a'). 

Since Fnn'(x) does not depend on kx, the sum­
mation over kx in Eq. (12) gives the total number 
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of allowed values of kx, which is ( eH/ en ) Lx Ly 
(where Lx and Ly are the dimensions of the sys­
tern along the x and y axes). Replacing the sum­
mation over kz in Eq. (12) by an integration, we re­
write this equation in the form 

1 = lim ~ G (qx, 0, q) 2 
1
2 2 [F nn' (ctq) 12 \ dkz lfo (Ekz+-qz, n•) 

'Y__,.O n, n' 3t ex, '-

- fo (Eh2 , n)l [Ehz+qz, n'- Ehz, n- nro + ifiy]-1 (14) 

(the volume V = LxLyLz of the system is taken 
to be unity). 

2. Before going on to the study of the dispersion 
equation (14), let us rewrite it in terms of dimen­
sionless quantities, taking as the unit of length a 
= (cti/eH)1f2 and as that of energy the quantum 
tiwc. Then instead of Eq. (14) we get 

1 =Jim G (qx, 0, qz) 23t~~2il ~ [Fnn•(q)J2 \ d~[fo (Et;+qz. n•) 
r--o , J 

n,n 

- fo (Et;,n)Hn' -n + + (q; +2qz~)- Q + if]-1 • (15) 

Let us make some remarks about this equation. 
Since in obtaining Eq. (15) we imposed no restric­
tions on the form of f0 (E), the equation holds for 
arbitrary f0 (E). Furthermore, Eq. (15) gives two 
branches of the spectrum of excitations. The poles 
from the denominator in Eq. (15) give the branch 
of one-particle excitations, and the root of the inte­
gral equation (15) with G (q) r' 0 gives the branch 
of collective oscillations. 

We shall consider below the case of a com­
pletely degenerate Fermi distribution. The chem­
ical potential iJ. is determined from the equation 
N = - (ax I 81J. ) T' where N is the number of parti­
cles in the system and x is the thermodynamical 
potential. For a completely degenerate Fermi gas 
this last relation takes the form 

- n, 
N N V2 ~ ( )'/• o = v = n"ct" LJ no - n , (16) 

n=O 

where J-t is connected with n0 by the relation n0 

= iJ./tiwc - %. The limits of the integration over 
?; in Eq. (15) are determined as usual from the 
condition 

f-t = n2k;J 2m + nwc (n + 112). 

The result of the integration over ?; is the 
equation (with damping neglected) 

n, 

l = G (qx, 0, qz) 2;1i21l 2], lFnn' (qJJ2 t 
n,n 

{ 
Q - (n'-n)- V2 (no- n')'1• +qz I 2 

X In }f ,1 
Q- (n'-n)+ 2 (n0 - n') '+ qz/2 

Q- (n'- n)- V2 (no- n)'f,_ q; I 2} 
+In V 'I 2 Q-(n'-n) + 2(n0 -n) '-qz/2 . 

(17) 

First of all, Eq. (17) must give the well known 
classical results, in particular the results of the 
hydrodynamical approximation, namely the equa­
tion 

(18) 

J is the angle between the vectors q and H, and 
w~ = 47l'e2N0 /m is the square of the Langmuir 
frequency. 

Since Eq. (18) does not involve any characteris­
tics of the energy distribution of the particles in 
the ground state, and also does not involve the 
magnitude of the vector q, to derive Eq. (18) from 
Eq. (17) we must take the limit as q- 0. To do 
this we separate out from the double sum over n 
and n' the terms with n = n'. For qz « n the sum 
of these terms gives the expression 

(Q~ = w~ I w7). (19) 

For qz « n we can transform the sum with n' 
r' n to the form 

n, 

X ~ 
n; n'>n 

( )•;, ( ')'/. 
p2 , ( ) n0 - n n0 - n ( , _ ) 

nn qx Q2-(n'-n)2 n n' (20) 

Using Eqs. (19) and (20), we can write Eq. (17) in 
the form 

X [(no-- n)'1•- (no--n- !)'1'] l. (21) 

For ~- 0 and qz- 0 we get from Eq. (21) the 
equation (18). 

In order to get the second term in the right 
member of Eq. (18) we must have n0 :::: 1. For n0 

< 1 this term is zero, i.e., the frequency of the 
wave with q .l H is zero. Since Eq. (18) is valid 
only for n0 < 1 and qx- 0, the criterion for the 
applicability of the hydrodynamic approximation 
reduces to the inequalities 

,c- c:! ( n2 No') •;, 
H '" c V2 , 

eli , ~I 
'.!.eHq;~ • (22) 

In the case of very strong magnetic field n0 « 1, 
i.e., in the case in which quantum theory is essen­
tial, Eq. (17) has for any value of q the solution 

2 _ o {- he 2 • - 2 } 2 , lizq• 4 •, 
w -- w0 exp -- '.!.dl q sm {} cos it ,- !Jm• cos V. (23) 

Let us make a closer analysis of the dispersion 
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equation (17) in the case of J close to 7r/2, or 
small values of qz. It follows from Eq. (21) that 
as the magnetic field strength decreases (i.e., as 
n0 increases) new terms are added to the sums 
over n and l, and this leads to discontinuous 
changes of the frequency w. For example, for n0 

< 1 the frequency w is determined from the 
equation 

m2 = co~ exp {- (ciij2eH) q2 sin2 -»} cos2 {}, (24) 

and for n0 = 1 it is determined from the equation 

1 = ( w~ cos2 % --1- w~ sin2 -&) exp {--eli- q2 sin2 -&.}. 
w2 ' w2 _ w~ 2eH 

(25) 
The appearance of the second term in the 

brackets is due to transitions between n = 0 and 
n = 1. There is an analogy between the behavior 
of an electron plasma in a magnetic field and that 
of a plasma in the periodic field of a lattice, in 
which latter case the role of the quantum number 
n is played by the band number. Transitions be­
tween states with different values of n in the mag­
netic-field case correspond to interband transitions 
in the case of the periodic field. In this analogy 
the difference is that in the case of filled bands 
the neglect of interband transitions leads to the 
absence of plasma waves, whereas the neglect of 
transitions between levels with different values of 
n leads only to the absence of plasma waves with 
J = 7r/2. This can be seen from Eq. (21). The 
first term in the right member of Eq. (21) does not 
include transitions between states of different n, 
since it is obtained on the condition n' = n; the 
transitions between states n' and n with n' ;e n 
are taken into account in the second term. 

3. Let us consider the expression for the 
longitudinal dielectric constant. We introduce 
P ( q, t ), the Fourier component of the polarization 
operator, which is connected with the correspond­
ing component of the electric field, E ( q, t), and 
the dielectric constant by the well known relation 

1 P (q, t) = 4n [e (w, q)- II E (q, t). (26) 

Then on taking into account the connection of 
E ( q, t) with the potential, that of the polarization 
with the charge density, and also the relation (26), 
we get for E (q, w) the expression in terms of 
dimensionless quantities: 

e (w, q) = I - lim G (qx, 0, q) 2:;:2cx ~ F~n' (q) 
r--.o nn' 

X ~ d~ ffo (Er,+q. n•) 

- fo (Er,. n) I fn'- n + T ('?j; +2qz~)- Q + ifp. (27) 

Without taking a concrete form for the function f0, 

for small qz we can write expressions for the 
real and imaginary parts E' and E" of the complex 
quantity E. We get for E' and E" the expressions 

Cnn' = F~n' (q) (n' - n) q-2 ~ d~ [fo (Er, ,n•) - fo (Er,, n) I; 
(28) 

e" (w, q) = 2~:;cx exp {- ~ q;} ~) d~fo (Er..n) 
n 

x [o G q2 cos2 'fr + q~ cos 'fr- Q) 

- o (-} q2 cos2 'fr - q~ cos 'fr + Q)] 

~ d~ [fo (£ r,.,..) 
n', n; n'-f n 

(29) 

The first term in E' is due to transitions without 
change of the quantum number n, and the second to 
transitions between states with different values of 
n. In the language of the band model, the first 
term describes "intraband" transitions and the 
second, "interband" transitions. In E" the first 
term contains the "intraband" transitions and 
describes the well known mechanism·of damping 
of the oscillations that was established by Landau. 8 

The second term is due to the "interband" transi­
tions and for q = 0 describes "interband" optical 
absorption. This is natural, since for q = 0 the 
transverse dielectric constant, which describes 
the interaction of light with matter, coincides with 
the longitudinal dielectric constant, which is due to 
collective oscillations of the electrons. This 
result was first established by Wolff, 9 and has 
also been found by Frohlich and Pelzer. 10 
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