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The structure of the region in which a plasma beam is reflected by a magnetic field has 
been investigated using the self-consistent microscopic equations of motion for the par­
ticles; the structure of the transition layer between a fixed plasma and a magnetic field 
has also been investigated. In the first case corrections are introduced to take account 
of the polarization which is produced at high velocities of the incident beam. 

1. In a number of problems concerned with the 
motion of plasma in magnetic fields, it is found 
that the plasma region and the region occupied by 
the magnetic field remain separated by boundary 
regions which exist for finite lengths of time. It 
is of practical interest to determine the thickness 
of these transition layers and the variation of par­
ticle density and magnetic field inside the layers. 
It is well-known that the diamagnetism of a plasma 
with infinite conductivity, which shields it from an 
external field, is due to true surface currents. If 
the layer is thin and if the velocity of the beam in­
cident on the magnetic wall is high, the electrons 
that comprise the shielding current can be rela­
tivistic. 

The analysis of retardation of a plasma bunch 
of finite dimensions in a magnetic field has much 
in common with a problem treated by Veksler. 1 

The fact that the kinetic energy of the bunch is 
converted at the turning point primarily into trans­
verse motion of the electrons1 

w:;: = m- (v-;_)2/2 = m+ (v~ }2 /2 (1) 

( m- and m + are the mass of the electron and ion 
respectively, vi is the electron velocity perpen­
dicular to the motion of the bunch, v0 is the bunch 
velocity before retardation) has been noted by 
Chapman and Ferraro (cf., for example, refer­
ence 2). 

An extension of Eq. (1) into the relativistic re­
gion by simply taking account of the increase in 
electron mass m-, as in reference 1, is inexact. 
Actually, at high velocities of the incident beam 
(v0) it is necessary to take account of the polariza­
tion of the plasma in the direction of incidence; 
this process consumes part of the kinetic energy 
which, in turn, does not enter into the transverse 

energy of the electrons. Polarization also leads 
to another effect: the distribution of the longitudi­
nal kinetic energy which is converted into trans­
verse energy of ions and electrons is affected and 
this effect also acts to reduce the value of wl. as 
compared with that given in Eq. (1). For this rea­
son, at relativistic velocities the transverse en­
ergy of the electrons will be smaller than the value 
which follows from Veksler's analysis, which as­
sumes a relativistic electron mass .1 

2. We first consider the motion of two particles 
of different mass in the xy plane in a uniform 
magnetic field H0 along the z axis; we assume 
rigid coupling in the x direction and no coupling 
in the y direction. The self-field is neglected. 
This model actually corresponds to the motion of 
particles in a plasma which is incident from x 
= - oo and which is reflected from a magnetic wall 
in the region x =::: 0. The plasma is assumed to be 
dense enough so that the electric polarization 
forces in the x direction are large, but rarefied 
enough so that the field H0 is not distorted. The 
equations of motion for each of the particles 

(the conventional notation is used), with rigid coup­
ling in the x direction v_i = vX: and the initial con­
dition vx = v~ = v0 at t = 0, show that the particle­
velocity vectors rotate along appropriate ellipses 
at the same frequency: 

vx = v~ = v: = v0 coswt, 

V~ = V~0 -V~ Vo COS (wt + n/2), 

v;= v;0 + Vm-Jm+vo cos (wt +n/2), 

w =eHo!c}lm+m- = Vw-w+. (3) 
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Here, w+ and w- are the Larmor frequencies for 
the ions and electrons respectively in the field H0 

while vt is the initial velocity. Integration of Eq. 
(3) over a quarter cycle [t0 = rr/2w] for Vyo = Vyo 
= 0 yields the appropriate semi-axes of the ellip­
ses described by the particles 

t, 

ro = x (t0) = ~ Vxdt = Vr-r+ = llm-m+cv0 /eH0 , y+(t0) 

0 

=-r-, y-(t0)=r+. (4) 

Thus, the depth of penetration of the particles into 
the region of magnetic field is equal to the mean 
geometric value of the Larmor radii r+ and r­
while the path traversed by the electron along the 
boundary y- ( t 0 ) is m + /m- times greater than the 
path traversed by the ion (cf. Fig. 1). It is appar­
ent from Eq. (3) that at t 0 = rr/2w the proton and 
the electron exchange kinetic energies: 

w~ (to) = m- v~/ 2, w:;_ (to) = m+v~ I 2. 

FIG. 1. Trajectories of particles m+ and m- in a magnetic 
field; the field is directed toward the reader and occupies the 
region x 2:. 0. 

This problem is equivalent to the problem of 
reflection of plasma from a magnetic wall H0 when 
the conditions noted above are satisfied (rarefied 
plasma and absence of polarization); these condi­
tions are stipulated by 

where o is the Debye polarization length for a 
particle of energy m +v~ while r 0 is determined 
by Eq. (4). These requirements imply 

(5) 

If the left-hand equality is not satisfied it is 
necessary to take account of the self magnetic 
field of the current in the y direction; if the right­
hand relation is not satisfied polarization must be 
taken into account. In particular, it can be seen 
that if the inverse inequality holds, i.e., HV8rr 
» m-c2N0, the coupling between the particles in 
the x direction is so small that each particle 
moves in a circle with the appropriate Larmor 
radius and, in general, there is no transfer of 
energy. 

We show below that if the field is free (that is 

to say, if in the absence of the plasma it extends 
over all space) the condition for stationary re­
flection for a plasma of infinite extent leads to 
the condition m +v~N0 = HV8rr, while the inequal­
ity in (5), which allows us to neglect polarization, 
reduces to the requirements m +v~ /m- c2 « 1 or 
wi(t0 )/m-c2 « 1 i.e., the electron velocities v1 
must be nonrelativistic. 

3. A sufficiently small portion of the surface 
which divides the regions occupied by the mag­
netic field and the plasma may be regarded as a 
plane surface; this is taken to be the plane x 
= const. The problem is formulated as follows. 
A plasma beam is incident from the region x = oo 

in the - x direction, with a given velocity. At 
x = - oo there is a field H0 which is along z; the 
magnitude of this field is to be determined from 
the existence condition for the stationary solution. 

It is clear from the symmetry of the problem 
that all quantities can only vary in the x direction 
and that there are only two particle-velocity com­
ponents, v~ = v± and vy. It will be assumed that 
the velocities of the ion beam (+) and the electron 
beam (-) can be different at infinity. This means 
that in addition to considering reflected plasma 
beams we can, in rough approximation treat also 
a fixed plasma. In the first case, the velocities 
of the electrons and ions are equal at infinity and 
can be identified with a macroscopic beam veloc­
ity which is large enough so that the thermal ve­
locities can be neglected. (A similar formulation 
of the problem has been considered by Chapman 
and Ferraro.2 ) In the second case (fixed plasma) 
the velocities of the particles can be identified 
with the mean thermal velocities, whose disper­
sion in direction and absolute magnitude is negli­
gible (i.e., the fixed plasma is approximated by 
two interpenetrating beams. 

The complete system of equations of motion 
for the particles in the self-consistent fields is 

m+v+ __ =e E+-v H dv+ ( 1+) 
dx c Y ' 

__ dv- (E+ 1 H) m v dX = - e c v-;; , 

m+dvtfdx = -eHjc, 

. N+ ~ N-- c dH 1 =e v -e v =---
Y Y Y 4n dx ' 

(6) 

Here, N0 is the plasma density at infinity (for both 
beams, incident and reflected, so that the density in 
one beam is N1 = N0 /2 ); v0 and vi) are the veloci­
ties for the positive and negative particles at x 
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= + oo • The positive direction for the velocity is 
taken to be from the plasma toward the boundary 
i.e., in the negative x direction; the remaining 
notation is conventional. 

The temperature and pressure in the x and y 
directions in the second problem (fixed plasma) 
are given by the formulas 

where H is measured in units of H1...fl+13 while 
x is measured in units of xtf/l+(i. 

The first integral of these equations gives a 
relation between v+ and H: 

or, in terms of the usual dimension variables: 

(13) 

P"ty=kT-:,yN±=N±m±(v"ty)2• (7) v+=v~-H2 18nm+v~N0 (l+B). (13') 

We now convert to dimensionless variables in For the incident-beam problem2 we have {3 = a 
which v, N, H and x are measured in units of « 1, v(i = vQ' = v0 and Eq. (13') yields the expres-

x1 = (m-c2 I 4ne2N 0)'1•. (8) 

Then, eliminating E, N+, N"", vj and vy. in (6), 
we obtain the system* 

'I /ri dH ( .. j7i v-) r V [f v- dX = 1 +a V [f V+ J Hdx, 
co 

X 

dv+ - dv- \ 
v+ dX + av dX =- (1 + a) H J Hdx, 

co 

(9) 

where 
a= m- lm+, ~ = m- (v~) 2 lm+ (v~) 2 = T_IT+, 

r = m+ (v~) 2 I m-c2 . (10) 

The particle velocities in the y' direction are: 
X X 

v~= ~~ ~Hdx, 
co 

v+ = - Va \ Hdx 
y J . 

co 

(11) 

In the incident-beam problem, we must put {3 = a 
in (9); in the case of a fixed plasma with equal 
electron and ion temperatures at infinity, we put 
{3 = 1. It is clear from Eq. (11) that the velocity 
ratio vy./vj = -m+;m- is the independent of y 
and corresponds to the condition that the total y 
momentum must vanish provided N- ( x) = N+ ( x). 
However, in the presence of polarization the total 
momentum does not vanish and there is motion of 
matter in the y direction. 

4. In the absence of polarization ( y « 1 ) the 
equations can be solved easily. From the third 
equation in (11) we find that v+ = V a/ {3 v-, 
N = N+ = N- = 1/v+ and the system reduces to 
two equations for v+ and H: 

X X 

v+ ~~ = ~ Hdx, v+ dv+ = - H I H dx 
dx J ' 

co co 

(12) 

*If we use the vector and scalar field potentials and elim­
inate v+ and v- rather than E, the system is somewhat 
more compact; however, the form used in the text is more con­
venient for the introduction of relativistic corrections. 

sion 

The thickness of the transition layer is approxi­
mately x1 j/l+(i. For a fixed plasma Eq. (13') 
together with the relation v- = V {3/ a v+ deter­
mines the relations between the electron-ion pres­
sure and the field. Using (7) for the pressure and 
the equation of continuity, we have from Eq. (13') 

Px = p~- H 2 I 8n, Px=p;+p:, p;l p:=T;IT:= ~; 
(13") 

the first two of these equations coincide with the 
results of the hydrodynamic analysis. 

The value of the magnetic field at the turning 
point ( v = 0) at x = 0 is given by 

H~18n = m+ (v~)2 N 0 (1 + ~). (14) 

If Eq. (14) is used to eliminate No in Eq. (8) for 
x1, which characterizes the thickness of the transi­
tion layer, we have 

x1 = [2r~r~ Va I~ (1 + ~) 1'1', 
where r 0 and r 0 are the Larmor radii of rotation 
for electrons and ions with velocities v0 and v0 
in the field H0• In the case of an incident beam 
( {3 = a « 1) this expression coincides with (4) for 
r 0 to within a factor ..f2. The difference is ex­
plained by the fact that in the present case the par­
ticles move in an inhomogeneous self-consistent 
field. 

Substituting Eq. (12) in Eq. (13), we obtain an 
equation for the magnetic field in the layer:* 

*We arrive at the same equation in the case of a plasma of 
equal masses (m- = m+). We put in Eq. (9) ex = {3 = 1. Further­
more, in order for this plasma density to coincide with the 
density of a real electron-ion plasma, we must write in the 
equation of continuity N0/2 in place of N0 • Then it is appar­
ent that v- = v+ for any value of y and the equations in (9) 
reduce to two identical systems, each of which reduces to Eq. 
(15). The difference lies only in the fact that we introduce in 
Eq. (8) for x1 m+ in place of m-, that is to say, the magni­
tude of the field for which stationary reflection is possible 
remains the same [Eq. (14)] but the width of the transition 
layer is increased by a factor of ym+;m-. This is explained by 
the absence of the constraining effect of the electrons. 
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_11_ {(1- H 2 ) !!!!_l1 = H (15) 
dx 2 dx J ' 

with the boundary conditions H = 0 at x = oo and 
H = f2 at x = 0.* Introducing the variable Z 
= dx/dH we can write Eq. (15) in the form 

d {' H") 1 } dH (l-2 Z = ZH, 
dx 

Z=dF[· (16) 

with the boundary condition Z = - oo at H = 0. In­
tegrating Eq. (16) and choosing from among the two 
solutions the one which satisfies the boundary con­
dition, we have 

Z ~·-(I-- H 2 /2)/ H lfl -H2/4, (17) 

1 cJ!T-.1)0+V1-ll'/4) -v--H,-. r-x = -c' l n - 2 I - - -· 1 2 . 
- (V2-:-1)(1-V1-H"!4) 1• • 

(18) 

The velocities v- = ..j {3/ a v+, v.,. = 1 - H2 /2 in the 
x direction are determined from the equations 

X=_.!:_ In CJ/2---1) (V2 -· V~ -J r2 (I +) I }12 
2 <"V2+1)(V2-V1+v+) +v 1 • 

(19) 
In Fig. 2 we show the approximate behavior of 

H, v and vH = H ( 1 - H2 /2) for the case of a re­
flected beam ( f3 = a « 1 ) as a function of the 
layer depth x. The velocities and energies in the 
y direction can be found from Eq. (11). 

FIG. 2. Behavior of the quantities 
v, H and vH in the transition layer. 

In particular, at the turning point x = 0, H = ..f2, 
X 

J Hdx = 1, the velocities and energies in the 
00 

ordinary variables (when 
spectively by 

+ ~~ ~ 
Vu= r (I.+~)m ;m+v~, 

wt = m- (vt)2 (I + ~). 

a « 1) are given re-

v~ =- Jf(I -H) m+ I m 

w~ = m+(v;\")2 (I+~). 

+ 
Vo, 

(20) 

When f3 = a « 1 (incident beam) the expressions 
in (20) show that the electrons and ions exchange 
kinetic energies at the turning point. 

At the turning point the velocities v+ and v­
vanish so that the particle density N and the cur­
rent density along the y axis become infinite. 

*If we neglect the term H2/2 compared with unity in Eq. 
(15) then this equation coincides with the equation that de­
scribes the penetration of a magnetic field into a superconduc­
tor. This equation is simpler for the superconductor because 
the density of the superconducting electrons is assumed to be 
constant over the entire depth of the layer. 

This effect arises because we have neglected the 
directional dispersion in the velocity. The mean 
values of those quantities remain finite in the 
layer. In order to compute the mean values we 
must know the number of particles in the layer. 
This quantity can be determined as follows:* 

~o /co "v7 ~~ 
n = ~ Nv; dx ~ vt dx = ~ v~ ZdH /! ~ v~ ZdH 

0 0 lr2 v2 
:; 

= -~-~=I .66. (21) 
2 vz -1 

It is then easy to show that the mean velocities will 
be n/..f2 ~ 1.2 times smaller than the maximum 
values given by Eq. (20). 

The total current in the y direction can be de­
termined either from the equation for j in (6) or 
from the expression I ~ r- = - enN0vy.x. We find t 

(22) 

5. We now consider the case in which polariza­
tion must be taken into account. In this case, only 
the incident-beam problem has any meaning, since 
the temperature of a fixed plasma at y = 1 would 
be T+ ~ 109 deg. On the other hand, beams with 
velocities v0 = ...Jm-c2/m+ ~ 7 x 108 em/sec, cor­
responding to y = 1, are completely feasible. 
Hence we can write in Eq. (11) a = f3 « 1, thereby 
obtaining the system of equations 

X X 

v- dll_ == \ Hdx v- dv+ =- H (' Hdx __1:_ 
dx j ' dx .) ' v-

oo 00 

X 

- v1, = y :, {H ~ H dx}. (23) 
00 

We shall only find the correction to the veloci­
ties obtained in the preceding section, assuming 
that y < 1. In the first approximation ( y = 0 ) we 
have the case already treated, where v = v+ = v-, 
N = N+ = N-, and the magnetic field is given by 
Eq. (18). In the second approximation, the field 
remains the same but the mean values of the ve­
locities v- and VF are determined from the third 
equation in (23). 

Using the relations obtained in Sec. 4 we find: 

k 1 is a numerical factor of order unity. 

*If n is determined by the expression, 

n=rNHdxjrHdx, 
0 0 

(24) 

then we find n = rr/2 ""1.6, which coincides with Eq. (21) in 
order of magnitude. 

tThe mean current density T = l/x1 = cH/417\f'2 x1 coin­
cides with the expression for the density of surface current in 
a superconductor in a magnetic field H. 



750 V. P. SHABANSKII 

Multiplying the third equation in (23) by vy and 
integrating over the entire layer, we obtain expres­
sions for the mean velocity and energy of electrons, 
taking account of polarization in the x direction: 

-- - 3 m+v2 

(w~)y = w~ (I -kay)= 4/l~ (1 - k3y), (25) 

where k2 and k3 are numerical factors approxi­
mately equal to unity. 

Thus, the relation wy = m +(v0 )2/2, which ap­
plies for low beam velocities, is not satisfied here. 
The kinetic energy of the electrons along the y 
axis is smaller than this value for y ¢ 0. In the 
second approximation the total energy of the elec­
trons and ions along the y axis is equal to the sum 
of the energies of the electrons and ions in the 
beam. This is apparent from the relation {(; vy 
- vy.;..r;;-, which is satisfied for any y, and from 
the fact that the field H does not change in the 
second approximation, so that 

0 

~v~= ~Hdx = -1. 
00 

Hence, the effect of polarization is not primarily 
to change the total kinetic energy of the particles, 
but rather to affect the redistribution of energy 
between electrons and ions in the layer in such a 
way that the transverse energy of the electrons 
is reduced while that of the ions is increased as 

compared with the values in the absence of polari­
zation. The effect of polarization on the total en­
ergy along the y axis first appears in the next ap­
proximation in y. In this case the thickness of the 
layer increases and the magnetic field is changed 
so that in absolute magnitude 

Vav;-=v; I v~ = li Hdx I< I. 
The remainder of the kinetic energy of the particle 
goes into polarization energy. 

Both effects appear before the relativistic in­
crease in mass; hence in the analysis of retarda­
tion of a plasma bunch in an axially symmetric 
magnetic field1 with y ~ 1 these effects should 
be considered on equal terms with the latter. The 
account of these effects should lead to a reduction 
in the acceleration of electrons in the collision of 
a fast plasma beam with a magnetic field. 

In conclusion I wish to thank S. I. Syrovat-skii 
for valuable remarks. 
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