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The structure of a low-intensity shock wave in a monatomic gas is obtained at large distances 
from the wave front. The calculation is based on a kinetic equation with a simplified collision 
integral containing a constant collision time. It is shown that in this case various physical 
quantities approach their limiting values at infinity with a slower rate than in the hydrody
namic theory. Therefore, if the kinetic equation is replaced by a finite system of ordinary 
differenti!ll equations it is impossible in principle to obtain the correct asymptotic solutions 
of the kinetic equation. 

1. INTRODUCTION 

THE problem of the structure of the shock waves 
in a liquid and in a gas has been the subject of a 
large number of papers. However, as far as the 
author knows, not one of these papers is devoted 
to the investigation of the structure of the shock 
wave at large distances from the wave front (dis
regarding those calculations of the asymptotic 
values in which the structure of the shock wave 
is not taken into account). The reason for this 
is to be found in the circumstance that in these 
papers the kinetic equation is replaced by a finite 
system of ordinary differential equations. In the 
paper by Becker, 1 this system is the Navier
Stokes equation with account of the heat conduc
tivity. Zoller, 2 using the method of Burnett, 3 

wrote down a system of seven differential equa
tions and investigated its properties. Grad, 4 by 
modifying the method of Burnett, derived a differ
ent system of differential equations and used it 
for the study of the shock waves. 

Many other papers differ from the work of 
Becker, Zoller, and Grad either in that certain 
simplifying assumptions are introduced or in that 
they concentrate on the quantitative aspects of the 
problem or on the numerical solution of the basic 
system of differential equations. 

The above-mentioned authors do not in any way 
attempt to simplify the collision integral in the 
kinetic equation. To the contrary, they try to 
write down the most accurate form possible. How
ever, when the transition from the kinetic equation 
to the system of differential equations is made, 
only the coefficients of the equation depend on the 
form of the collision integral, so that the over-all 

picture changes only quantitatively when the form 
of the collision integral is altered. 

The paper of Mott-Smith, 5 which stands by it
self, also contains no answer to the problem of the 
asymptotic form of the shock wave, since it is not 
clear what is the character of the approximations 
underlying this work. 

The aim of the present paper is the determina
tion of the correct form of the asymptotic shock 
wave on the basis of the simplest kinetic equation, 
in which the collision integral is written in the 
radically simplified form (2.1). It will be shown 
that the hydrodynamic quantities approach their 
limiting values at great distances from the front 
of the shock wave as C1 exp{- C2 1 x 1213 } ( C1 and 
C2 are certain constant coefficients). On the other 
hand, the solutions of the ordinary differential equa
tions obtained in references 1, 2, and 4 approach 
their limiting values exponentially. This fact dem
onstrates that the replacement of the kinetic equa
tion by a system of differential equations always 
leads to incorrect asymptotic values. 

It is easy to see what the reason for this situa
tion is. At large distances from the wave front, 
where all hydrodynamic quantities are close to 
their limiting values, one can linearize the differ
ential equations. In this case the way in which the 
solution approaches its limiting value is deter
mined by the smallest characteristic denominator. 
In going from one approximation to the next, the 
system of differential equations is changed, and 
in general the smallest characteristic denomi
nator is changed, too. If the characteristic de
nominators obtained in this way go to zero, no 
approximation gives the correct asymptotic val
ues. The asymptotic form derived in the present 
paper shows that this is indeed the case. 
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2. FORMULATION OF THE PROBLEM 

In the present paper we consider the structure 
of a low intensity shock wave on the basis of the 
kinetic equation with collision integral. The latter 
is written in the form 

J = Uo- f)h, (2.1) 

where f = f ( x, v) is the distribution function (the 
x axis is directed along the direction of motion of 
the liquid perpendicular to the wave front), T is 
the relaxation time, which is assumed constant, 
and f0(x, v) is the Maxwell distribution function, 

[ m ]'I• [ (vx- ux)" + v~ + v~ 1 
fo (x, v) = :atkT (x) n (x) exp - m 2kT (x) - ' 

(2.2) 

corresponding at every point to the average density 
n(x), velocity u(x), and energy %n(x)kT(x): 

n (x) = ~ f (x, v) dv, n (x)u(x) = ~ Vx f (x, v) dv, 

f n (x) k T(x) = \ !!':.2 [<vx - u (x)) 2 -1- v2 + v2] f (x, v) dv. 
j u z (2.3) 

This form of the collision integral automatically 
ensures the fulfillment of the conservation laws for 
the number of particles, momentum, and energy in 
the use of the kinetic equation. On the other hand, 
if the deviation of the distribution function f ( x, v ) 
from the Maxwellian form is small, the error 
caused by the replacement of the exact collision 
integral by the expression (2.1) is insignificant. 

The relations (2.3) together with the kinetic 
equation 

(2.4) 

form a system of four equations with the four un
known functions f, n, u, and T. To this we must 
add the boundary conditions. For a shock wave, 
these conditions are that as x - ± oo the functions 
n ( x ) , u ( x), and T ( x) approach certain limits 
which we denote by n±, u±, and T±. The distribu
tion function f approaches the Maxwell function. 

The system (2.3), (2.4) can be solved by making 
use of the smallness of the relative discontinuities 

e1 = (n+- n_)jn_, e2 = (u+- u_)ju_, 

e3 = (T+- T_)jT_. (2.5) 

Here it turns out that the results obtained for small 
distances from the wave front [x"' u_ TE- 1; see 
formula (6.4)] are in agreement with the results 
of hydrodynamic theory with account of the coef
ficients of viscosity and heat conductivity. At dis
tances much larger than u_ TE- 1, the kinetic ap
proach [see formula (7 .4)] leads to the conclu
sion that the hydrodynamic quantities approach 

their limiting values at a slower rate than in the 
hydrodynamic theory. This fact is explained phys
ically by the presence of fast particles which pen
etrate to large distances from the wave front with 
almost no collisions. It is clear, therefore, that 
the structure of the shock wave far away from its 
front is determined by the dependence of the re
laxation time T on the velocity at large veloci
ties. It appears that the hydrodynamic theory 
predicts correctly only the structure of the steep
est part of a low intensity shock wave. 

3. DERIVATION OF THE BASIC SYSTEM OF 
INTEGRAL EQUATIONS 

The formal solution of the kinetic equation (2.4) 
has the form 

X 

f (x, v) = 't~x ~ / 0 ("£, v) exp l \-::x J d£, (3.1) 
-Sux 

where Svx = oo sgn vx: Svx = + oo if Vx > 0, and 
Svx = - oo if Vx < 0. 

Using (3.1), we can eliminate f from the equa
tions (2.3). Introducing the dimensionless vari
ables 

n' = n/ n_, T'=TIT_, 

u' = ulu_, x' = x/ -ru_, (3.2) 

we obtain the basic system of nonlinear integral 
equations 

oo x' 

n'(x')=-.la. \ dv \ n'(£) _!_exp[£-x' v 1t ) ) VT' (£) v v 
-oo -Sv 

-a (v-u' (£))2] dr: 
T' (6) "'' 

co x' 

n' (x') u' (x') = 1 ~~ \' dv \ n' (£) exp [6 -x' v n: J ) vr· <sl v 
-oo -Sv 

- (v-u'(m2]dr: 
a. T'(S) "'' 

i_ n' (x') T' (x') + n' (x') u'2 (x') 2a. 
oo x' 

= -. l""i:_ I dv I n' (£) v exp ls- x' v n ·' ) VT' (s) v -oo -Sv 

-a (v-u' (£))2] d£ 
T'(S) 

co x' 

'v~ ~ dv ~ n' (~) YT' (~) ~ exp [6-: x' 
-oo -Sv 

(v _ u' (£))2 J mu~ 
-a T' (6) d6, oc = 2kL . 

The system (3.3) must be supplemented by the 
boundary conditions 

(3.3) 
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n' (- oo) = 1, u' (- oo) = 1, T' (- oo) = 1; 

n'(+oo) =I +s~> u'(+oo)= I +s2 , 

T' (+ oo) = I + 83 . (3.4) 

The relaxation time T does not enter in the re
lations (3.3) and (3.4). Therefore, it determines 
only the scale. 

It is easily shown that the discontinuities E 1, 

E2, and E3 must satisfy the well-known relations 
of shock wave theory in order that the system (3.3) 
with the conditions (3.4) be soluble. We shall 
therefore regard all discontinuities as known in 
the following. 

4. THE CASE OF LOW-INTENSITY SHOCK 
WAVES ( € j « 1 ) 

The basic system (3.3) is conveniently rewritten 
in the form 

00 

<p1 ly (x), a] = ~ Kt (x- ~. y (~). a) d~, 
-oo 

where 

i=1,2,3, 
(4.1) 

Y = {Y~> Y2• Ya}. Y1 = n', Y• = u', Ya = T'; 
C!J1 = Y1• <Jl2 = Y1Y•· <Jla = (3/2 a) Y1Ya + Y1Y~; 

Sx 

K -. fa: -'! \' [ X ( V - Y2)2 ] dv 
t(x, y, a) = V n Y1Ya ' .) exp - v- cx Ys v' 

0 

- sx 
K2(x, y, a)= Jf: Y1Y-;;'1• ~exp [--;. -cx (v:y•)"]dv, 

0 

1 Sx -

Ka (x, y, a) = Vii ~Y1 (V :a v 
0 

+ -./!j; ~)exp [-.!._ -cx<v-y•)"] dv. V ~v v Ys 

Our aim is the solution of this system of inte
gral equations with the assumption that the discon
tinuities E j « 1. For this purpose we carry out 
the following transformations. We set 

y1 (x) = 1 + BJ 6 (x) + ~Jfli (x); 6 (x) = 1, 

X > 0; 6 (x) = 0, X< 0 
It is easily seen that the functions J.LjU~) do not 

exceed unity in order of magnitude and go to zero 
as x-±oo. 

Let us expand both sides of (4.1) in powers of 
Ej and discard all terms containing Ej in third or 
higher order. The resulting relations are then 
Fourier-transformed. We shall use the notation 

00 00 

ji1 (k) = ~ !l 1 (x} etkx dx, ~j (k) = ~ 111 (x) e'"x dx, 
-co 0 

00 00 

ji11 (k) = ~ fli (x) r-1 (x) eikxdx, !11z(k) = ~flJ(X)fll(x)e'"x dx. 
-oo 0 

We solve the resultant system of equations with 
respect to Mj ( k) by expressing the latter in terms 
of the iljz( k). We find 

Byrty (k) = & {By + ZD (~. a) h Bj Bt Bjty (k)} 

1 + 
- D (k, a) ~ BJ 81 fl 1 (k) BitY (k) 

j, l 

1 -
- ZD (k, a) ~flil (k) Bily (k), 

j, l 

(4.2) 

where the functions Bjzy(k) and D (k, a) are con
structed in the following way. Let us introduce the 
notation 

iJ K 11 (x, y, a) = ayi K;(x, y, a), 

a• 
Km (x, y, a) = ay,.ay1 /(1 (x, y, a), 

00 
~ 

Gti (k, a) = } Kii (x, I, a) eikx dx, 
-00 

00 

Gtit (k, a) = ~ Km (x, I, a) eikx dx, 
--oo 

- I a,i(k, a)-Gij (0, a) I 
D (k, a) - det ik . (4.3) 

We denote the minors of this determinant by 
Aij ( k, a ) . Furthermore, 

B (k) = "'A (k ) G mil (k, ao)- G mil (0, ao) (4 4) 
fly 4J my ' ao ik • • 

m 

Here a 0 is the critical value of the parameter a 
corresponding to a "shock wave" of zero intensity. 
For such a wave, the velocity of the liquid u is 
equal to the velocity of sound c, and therefore 
a 0 = mcV2kT _ = %. The same value of a 0 is ob
tained below from the condition of .solubility of the 
problem under consideration. In view of the fact 
that we are considering small discontinuities, the 
difference a- a0 is small, and we have therefore 
replaced a by a 0 in the quadratic terms in (4.4). 

The elements of the determinant (4.3) have a 
comparatively simple form. For example, the 
element D 11 ( k, a) is equal to 

/ - r -a(v-1)1 

D 11 (k, a) = J ~ ~ v~ _ ikv dv. (4.5) 
-00 

In the derivation of the relations (4.2) we have 
made use of the identity 

00 

<p1 (y, a) = ~ Kt (x- ~; y, a) d~, 
-00 

which has a simple physical meaning: a current 
with constant density n, velocity u, and tempera-
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ture T is possible for arbitrary values of n, u, 
and T. 

Let us consider Eq. (4.2) in more detail. In 
order that the functions liy( k) remain finite for 
k = 0, we must require 

1 
By + '2D (O, ex)~ f!j Bt Bjty (0) = 0. (4.6) 

j .l 

It is easily seen that these conditions coincide up 
to terms of third order with the usual conditions 
for the discontinuities of the hydrodynamic quan
tities in a shock wave. 

It follows from (4.6) that D ( 0, a) ,...., E. This im
plies that all terms in (4.2) have the same order of 
magnitude for small k. This is the explanation for 
the necessity of including the quadratic terms even 
in the case of a shock wave of low intensity. As 
was to be expected, the problem of the shock wave 
is nonlinear already in the first nonvanishing ap
proximation. 

We note finally that the relation D ( 0, a) ,...., E 

implies D ( 0, a 0 ) = 0. This equation leads to the 
value of a 0 mentioned above. 

5. METHOD OF SUCCESSIVE APPROXIMATIONS 

The quadratic terms in Eq. (4.2) are not equally 
important as the linear terms for all values of k, 
but only for small k, when D ( k, a ) is not very 
different from D ( 0, a), which has the same order 
of magnitude as the discontinuities E. It is there
fore reasonable to represent all coefficients in 
(4.2) in the form of a sum of their approximate 
asymptotic expressions for small k and certain 
corrections of higher order of smallness. Thus 
we rewrite Eq. (4.2) in the form 

1 r 1 "' Bf'lz ] - k - ik I+ 2 [D (ex)+ ikD1 (ex)) .L.l1 ---;:;- BitY (O) +fly ( ) 
I' 

1 "' eiet + (k + D (ex)+ ikD1 (ex) P 1 ----e.; Bjty (O)fli ) 
I, 

1 "' e.e1 -+ 2 [D (ex)+ ikDl(ex)) .L.J -f- Bity (0) flit (k) = F y (k), (5.1) 
j, l y 

where 
1 "'' [B iiY (k) B ilY (0) J 

F Y (k) = B.; f; 8 i 8 l D (k, ex) - D (ex) + ikD1 (ex) 

X [2~k- fl7 (k)-} ilit (k)]; 

D (k, ex) = D (a) + ikD1 (ex), I k I< I. (5.2) 

It can be shown that the function F y( k) must be 
neglected, since it is of higher order of smallness 
than the terms on the left-hand side of (5.1). We 
recall that terms of this order have already been 
neglected earlier. 

In reality, however, we cannot discard the func
tion F y< k), because it is not analytic in the point 
k = 0 on the real axis, in contrast to the coeffi
cients on the left-hand side of (5.1). The presence 
of a nonanalytic function in the equation leads to a 
nonanalytic solution. On the other hand, it is well 
known that the Fourier transform of a nonanalytic 
function goes to zero as x - ± oo at a considerably 
slower rate than the Fourier transform of a func
tion which is analytic on the whole real axis. 

Neglecting the small term on the right-hand 
side would thus lead to a serious distortion of the 
form of the shock wave at large distances from 
the wave front. The terms neglected earlier have 
an analytic part which is of the same order of 
smallness as the function F y( k), while the re
maining nonanalytic part is of even higher order. 
By keeping the right-hand side of (5.1) we there
fore are kept from unwittingly going beyond the 
accuracy of the approximation. 

To solve Eq. (5.1) we first neglect the right
hand side and find the first approximation. We 
then substitute on the right-hand side of (5.1) the 
functions J.l.j found in first approximation and ob
tain an equation for the second approximation. 
There is no sense in trying to improve the accu
racy any further in the framework of the Eq. 
(5 .1), since this equation is itself not sufficiently 
exact for this purpose. We therefore confine our
selves to the above-mentioned two approximations. 

6. FIRST APPROXIMATION (AT SMALL DIS
TANCES FROM THE WAVE FRONT) 

As already mentioned, we must neglect the 
right-hand side of (5.1) for the calculation of the 
functions J.l.j in the first approximation. As a 
first consequence, we find that then all functions 
J.l.j are identical. Indeed, the coefficients Amy 
( 0, a 0 ) entering in the expression (4.4) for 
Bjzy( 0) are the cofactors of the elements of the 
determinat D ( 0, a 0 ), which is equal to zero. 
They can therefore be written in the form of a 
product, 

(6.1) 

where 

Pm = Aml (0, a 0) I A11 (0, a 0), cry = Al'i (0, czo) I Au (0, Gto). 

It follows from (6.1), (4.4), and (4.6) that the ratios 

are independent of the index y. The coefficients 
of Eq. (5.1), therefore, do not depend on the index 
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y. Hence all the functions iiy are identical in this 
approximation. 

With this in mind, we rewrite Eq. (5.1) with the 
help of (4.6) and obtain 

-I + ft+ (ik - 6)- ft+2 b =- ,_- (ik + 6) + ft- 2 6, 
Y Y ry Y 

6 = D(a.) I D1 (a.)= a- a0 =a-+. (6.2) 

The left-hand side of (6.2) is analytic and 
bounded in the upper half-plane, and the right-hand 
side is analytic and bounded in the lower half-plane. 
According to the Liouville theorem, each side of 
(6.2) is therefore equal to a constant: 

- -z 
- I + ft~ (ik - 6) - ft~ b = C, 

- ft- (ik + 6) + ft-2 <'I = c. (6.3) 
y y 

The first of these relations can be rewritten in 
the form 

00 

-I - fty ( + 0) - ~ eikx' [6fty (x') 
0 

+ ft~ (x') + 6r-t~ (x') 1 dx' = C. 

The integral in this relation goes to zero as 
k- ± oo. We therefore obtain 

X> 0. 

In the same way we obtain from the second equa
tion in (6.3) 

-fLy(- 0) = C, ft~ + 6t-\- 6r-t~ = 0, X< 0. 

It follows from these relations that the function 
vy(x) = (} (x) + Jly(x) is continuous at x = 0. With 
the appropriate choice of the separation constant 
C we have then 

1 
Vy(X) = 1 +e-&x • 

In terms of the dimensional variables this formula 
has the following form 

n (x)- n_ u (x) - u_ T (x) - T_ 

n_ u_ 

[ ( m (u2 -cz) )]-1 
= I + exp - x 2kT--"Cu_- (6.4) 

This solution satisfies the conditions at infinity 
only if o > 0 or, which is the same thing, u_ > c_. 
Thus the relative velocity of the gas in front of the 
shock wave is larger than the velocity of sound. 

The relation (6 .4) coincides with the well known 
formula6 describing the structure of the shock wave 
in the "approximation of the kinetic coefficients," 
i.e., under the assumption that the average velocity, 
density, and temperature change slowly in the dif
fuse front of the shock wave. 

7. STRUCTURE OF THE WAVE AT LARGE 
DISTANCES 

Let us now take account of the function F y( k) 
standing on the right-hand side of Eq. (5.1). For 
this purpose we set 

11J(k) = P:1o (k) + -p, (k), 

where ;:i"j 0(k) are the approximate solutions of 
(5.1) obtained in Sec. 5, and Pj(k) are correc
tions due to the inclusion of right-hand side of 
(5 .1). As has already been shown, the functions 
Pj ( k) are considerably smaller than the iij0 ( k) 
for all real values of k. Therefore, the inclusion 
of the correction terms represents a surpassing 
of the accuracy at small distances. At large dis
tances, on the other hand, the functions Pj ( x') 
play the major role, since the functions llj0(x') 
go to zero very rapidly. 

With this in mind, we calculate the function 
Pj(X') only for large values of x'. To be definite, 
we consider the region in front of the shock wave 
( x' < 0 ) . Then 

00 

p.j(x') = fl,(x') = 2~ ~ r,(k) e-ikx' dk, 
-00 

The value of this integral for large x' is deter
mined by the behavior of the function Pj(k) near 
its lowest singular point in the upper half-plane. 
This point is the branch point k = 0. Indeed, the 
integral (4.5) representing the function D11 ( k, a) 
coincides in the left half-plane with one analytic 
function and in the right half-plane with another. 
All other functions entering in the expression for 
F y( k) have the same character. Thus the function 
F y( k) coincides in the right half-plane with one 
analytic function, Fy(k), and in the left half-plane 
with another, Fy( k). 

The function Py( k) is analytic in the lower half
plane. With the help of (5.1), it can be continued 
through the positive half-axis into the right half
plane and through the negative half-axis into the 
left half-plane. Since the first continuation in
volves the function Fy(k) and the second continu
ation the function Fy(k), the values of Py(k) are 
different on the left and right sides of the imagi
nary axis. The difference between these values 
is equal to 

6p- (k) = F~ (k) - F~ (k). 
y 

Thus, if we deform the contour of integration in 
(7 .1) in such a way as to make it run along the 
imaginary axis, we obtain 
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ioo 

( ') 1 \ _.----= (k) -ikx' dk 11 i x = 2n j u pi e , 
0 

x' <O, I x' I ~6-2. 
(7 .2) 

Computing this integral by the method of steep
est descent,. we find 

25 I x' 1'/, [ 3 '/ '/ 4cx J fL (x') = --.--- exp - -(2ax'2) '- 2 (a2x') •-- . 
I 54 V 3 ex - cx0 2 9 

(7 .3) 
In the dimensional variables this relation takes 

the form 

n (x) - n_ u (x) - u_ T (x) - T _ 
n_ = u_ = T_ 

25 · x )'f, 2kT _ l 3 ( m x2 )'/, 

=54 "V3 (.-u_ m (u: -c:) exp - 2 kL ~ 

x<O, I xI -r:c_l~ [2kT_j m (u:- c~J]3. (7 .4) 

Roughly speaking, the difference between the values 
of n, u, and T and their limiting values goes to 
zero with increasing I xI as exp (- const I x 1213 ), 

while the hydrodynamic theory leads to a decrease 
of the type exp (- const I xI). 
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