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We have applied the diagram technique developed in reference 5 to the evaluation of the high­
frequency conductivity. We obtain exciton states with large radii which occur near the thresh­
old for the direct transition, whatever the position of the band extrema. We determine the ex­
citon absorption spectrum and show that the fine structure of the exciton absorption lines is 
connected with a Doppler shift. 

1. CLASSIFICATION OF THE DffiECT TRANSI­
TIONS 

THE absorption spectrum connected with the ex­
citation of large radius excitons is a set of lines 
near the red limit of the main absorption of the 
crystal. The structure of the exciton states is 
connected in an essential way with the character 
of the interband transition responsible for the 
main absorption. The character of the interband 
transition is in turn determined by the relative 
position of the energy surfaces of the valence 
band and the conduction band in the Brillouin 
zone. The transitions that occur without the par­
ticipation of phonons (direct transitions ) are 
usually considered for the case (case a) where 
the extrema of the valence band and of the conduc­
tion band lie in the same point in momentum space. 
A number of authors1- 3 have considered the exci­
ton states accompanying such a direct transition. 

In the case when the energy maximum of the 
valence band and the minimum of the conduction 
band are in different points of p-space (case b ) , 
one usually only pays attention to the indirect tran­
sitions that involve the participation of a phonon.1 

The exciton spectrum accompanying a direct tran­
sition of this latter type is of some interest. The 
absorption coefficient connected with the main 
transition is an increasing function of the frequency. 
The initial section of this curve is determined in 
case b by the indirect transition. The absorption 
coefficient is relatively small in this section. It 
increases steeply near the frequency w0 at which 
the direct transition becomes possible. The exci­
ton absorption spectrum due to the direct transi-

tion will lie in the region of the indirect transition. 
It is the purpose of the present paper to study ex­
citon states of this latter type. 

The direct transition proceeds in case b from 
a point on the slope of the energy surface of the 
valence band to a point on the slope of the energy 
surface of the conduction band in such a way that 
these points correspond to the same wave vector 
apart from the small wave vector of the light. It 
is clear that such a transition occurs first at a 
frequency w0 corresponding to the minimum value 
for the difference between the energies in the bands 
at the same electron wave vector. Because of the 
crystal symmetry there will be in p-space several 
such completely identical threshold points for the 
direct transition K1, ••. , Kit .... 

We shall show that an exciton is formed near 
each threshold point for a direct transition Ki. 
These excitons are equivalent, and their spectra 
are the same if we neglect the wave vector of the 
light. Each of them, however, is formed by the 
absorption of light by an electron which has a 
non-vanishing average velocity vi = BEp /ap I p=Kr 
It is clear that such an electron perceives the 
light with a Doppler shift ..::lwi = K ·Vi where K is 
the wave vector of the light. Since the velocities 
of the electrons in the different points Ki are in 
different directions, the exciton absorption line 
will be split into several components correspond­
ing to the excitons in the different points Ki, while 
the position of these components will depend on the 
orientation of the wave vector of the light with re­
spect to the crystal axes. This effect is specific 
for the exciton absorption spectrum. 
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2. THE DIAGRAM TECHNIQUE FOR THE EVAL­
UATION OF THE HIGH-FREQUENCY ELEC­
TRON CONDUCTIVITY OF THE CRYSTAL 

We construct the solution of the problem by 
using the simple model of an electron gas located 
in a periodic field, and we assume that the interac­
tion between the electrons is sufficiently weak so 
that the effective interaction energy can be as­
sumed to be much less than the width of the for­
bidden band. A phenomenological approach of 
this kind is the usual one in the theory of the Mott 
excitons. 1- 3 

We consider a system of electrons in the peri­
odic field of the lattice which fills the valence band. 
The Hamiltonian H of the system is of the form 

H=H0 ~U; H0 = ~siPafPaiP' 
jp 

X (pl, p~,, '() fi,i, (p2, p4,- y), 

rj,j, (pl, P:J, rl = ~ eiY><t~J;,p, (x) tPJ,~, (x) dx. 
v, 

(1) 

Here ajp and ajp are respectively the creation and 
the annihilation operators of an electron in a state 
in the j-th band with a quasi-momentum p, which 
is described by a Bloch wave function l/Jjp(x); Ejp 
is the energy of this state; V is the normalizing 
volume; Vo the volume of the elementary cell in 
the crystal; bm and bn are vectors which are mul­
tiples of the reciprocal lattice vector; the summa­
tion in the equation for U is over all the encoun­
tered band numbers and quasi-momenta. The quan­
tity E is the dielectric constant, which decreases 
the electron-electron interaction; we assume it to 
be a scalar for the sake of simplicity, although one 
can easily generalize the final result to the case 
where E is a tensor. 

We use Eq. (4a) of reference 5 to find a correc­
tion to the single-particle density matrix fjp,j'p' 
which is proportional to the intensity of the applied 
electrical field EJ.'( x, t) = EJ.'( K, s) exp ( iK • x + st), 
where s = - iw + v, K and w are the wave vector 
and the frequency of the light, and v is an adia­
batic parameter (in the final equations v - 0 ) . 
We have, indeed, 

fi~. i'~' (t) 

= E (x s) est "V Qi'k',i'p' (s r:l) \ eixx J·. (x)·k 'k'dx' (2a) 
!.L ' .-'.J tk, IP ' tJ J ,J. t ,t . ' 

ik,i'k' 

r H (r: + ili/.,JJ + 1 
x exp L- iii a;kai'k' S, (2b) 

(jl'- (x) ),k, i'k' 

= (e/2m) [tjl;k (x) ~,tP;'k' (x)- \jli'k' (x) Pp.tP;k (x)l, (2c) 

Z = Sp e-f3H, {3 = T-1, T is the absolute tempera­
ture in energy units. 

To evaluate the function dk'k~p,j'p' ( s, {3) we use 
1 ,J 

a diagram technique. 5 The feature of our case is 
that we have chosen the Bloch wave functions as 
the single-electron states. It is clear that in that 
case each line corresponds to the combination of 
the indices j and p. The vertex describing the 
electron-electron interaction is drawn in Fig. 1; 
it corresponds to the factor 

• _ 1 "V 4:rte2e-1 

± (tli) ~ v (pa _PI+ b )2 ff,f, (pl, Pa, Pa- P1 + bn) 
mn n 

X r j,f, (p2, P4, P2- P4- bm) 6p,+p,-p,-p,, bm-Dn. 

J,11~~i7 
FIG. 1 

The absolute magnitude of the quasi-momentum 
of any line is less than half a reciprocal lattice 
vector. Because of this, the quantity bn - bm is 
less than a reciprocal lattice vector. It is clear 
that a factor 1 - njp or njp• where njp is a Fermi 
function, will correspond to a line. We shall con­
sider the case T « nw0; then njp = 0, if j is an 
index of an unfilled band, and njp = 1 if j is the 
index of a filled band. 

We consider successively different approxi­
mations of perturbation theory. In Fig. 2 we give 
the zeroth order term. This diagram corresponds 
to the expression 

6,1.,6i'i()pk' 6kp' cr-1(cr -· ei'p' ·- e1p)- 1 [s +irr1 (e1p- e1·p·)]-1 . 

r 

j 

L. ___ -·--·--

r 
f 
I 
r-injJ 

-iH .. 

FIG. 2 
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The index j refers to a filled band and the index 
j' to an empty band. 

Since the frequency of the light is close to the 
threshold frequency w0 for a direct transition, 
the dominant zeroth order term will be the one 
where the index j is the same as the index v, re­
ferring to the valence band and when the index j' 
is the same as the index c referring to the con­
duction band. For that term the denominator is 
a minimum. The threshold frequency for a direct 
transition is given by w0 = Min ( Ecp+/C - e:vp). 
From the condition 

a 
()p ( Ecp+><- evp) !p=K; (><I = 0 

v • 

we can determine the momentum Ki ( K ) of the 
electrons which undergo a direct transition at the 
absorption threshold. It will be clear that only the 
two above-mentioned bands will be important. We 
introduce the notation 

~ eixx (jp (x) )ck, vk·dx = <'>k. k'+x i:• (k'' x)' 

jp.(k', x) = ~ ei><x(jp. (x))ck'+x.vk•dx. (3) 
v. 

One sees easily that 

~ e-i~xuv (x) )vp. cp' dx = {Jp', P+~ j: (p, §). 

We have not considered here the possibility of an 
Umklapp process for which k' + K -k' = b (b is 
the reciprocal lattice vector), since the limits be­
tween which /C can vary are limited to a very small 
region of order /C near the edge of the Brillouin 
zone and the corresponding integral over k' will 
be small. 

3. ELIMINATION OF SINGULAR DIAGRAMS 

Some first-order diagrams are drawn in Fig. 3. 
We note a characteristic singularity of the diagram 
3a. To do this we write down the contribution 
J~U(y) to the average current density of the sys­
tem in the point y: 

J~1 ) (y) = 2] ~~~. cp' (jv (y))vp, cp'• (4a) 
pp' 

Here 
. ( ) - .!._ '\,1 i~y "* ( !: ... 
lv Yvp,cp·- vfe lv p,.,)up',p+~' (4b) 

and jv(P, ~) is defined by Eq. (3b); 

[ ' i -1 4:te2~;-l 
X s I li: ( Ccp' - Evp) I v (k' - p + bnJ2 r vv 

X (p, k', k'.- p + bn) fcc (k, p', k- p' -·bm) 6x-~. bm-bn. 

(4c) 

I 
tr-ilijJ 

1~.~;~~" fl.~. ~-'" 
IJH " ~'\...._!!p_ 

I --- ~--·--

1 I 

i r-thtS 1 r-inj3 

FIG. 3 

The most important term in Eq. (4a) is, when we 
take (4b) and (4c) into account, the term with bm 
= bn = 0, in which there occurs an integral of the 
type 

[ i ]-1 X S + /i: (ecp.t><- Evp) . 

The denominator in the integrand has at w = w0 

the form 

S + i'fi-l (ecp+x- Evp) = V- f.l"ll [p- K; ~x)l" [p- K; (xH3 

if p is near Ki (/C); A ( k', p) is a function which is 
finite for k' = p = Ki (/C). It is clear that the inte­
gral diverges logarithmically as v - 0. The terms 
connected with Umklapp processes for which bm 
or bn are different from zero are finite and small, 
since we have assumed that the reciprocal of the 
dielectric constant is sufficiently small. We shall 
therefore not consider Umklapp processes in the 
following, and put bm = bn = 0 at each vertex. 
Similarly we shall not take into account the dia­
grams of Figs. 3b and 3c. In these diagrams there 
is no divergence near the points Ki (/C): in diagram 
3b the denominator corresponding to the last sec­
tion on the right does not tend to zero, while in dia­
gram 3c the interaction matrix element does not 
tend to infinity. 

Turning to higher-order approximations in the 
perturbation theory, we shall retain only those 
terms which have the largest singularity for a 
given power of the small parameter e:-1• Such 
terms are drawn in Fig. 4a. Other terms, even 
though they diverge for e:-1 « 1, can be neglected 
in comparison with the ones taken into account. 
One can, for instance, neglect the diagram of Fig. 
5 in comparison with the diagram 4a, since it has 
an extra small factor e:-2 for the same degree of 
divergence. 

a 

b + 

FIG. 4 
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FIG. 5 

All diagrams of Fig. 4a have a common factor 
corresponding to the horizontal section on the left 
so that it is convenient to introduce instead of the 

sum of the diagrams G~;,P' ( s, a) a quantity ~~' ( s) 

such that 

We write down for the function F!t'~' ( s) the 
kp 

equation depicted in Fig. 4b 

Ftl' (s) = bk'p [s + in-1 (ecp' -llvp) ]-1 

( ·n) 1 ~ pk', ~>'+Y ( ) 4rre2e-r 
-I - .::J k,p+ y s -v. fcc(P +r. p, r) 

y r 

, r ( . , _L ) -l _] i < )J-1 X vv p , p I r' - r s ,- r; Bcp'- Bvp • (6) 

One should note that the interaction matrix ele­
ment has in that equation the opposite sign, because 
of the intersection on the line v. The potential en­
ergy term in Eq. (6) describes therefore an attrac­
tion. When E-1 « 1 only small momentum trans­
fers y are important in Eq. (6). 

The quantities r cc and r vv are equal to unity 
for small y. If we take this into account and also 
the fact that p' = p + K and k = k' + K we can write 
Eq. (6) in the form 

(- ins + ecp+>< - Bvp) R. (p, k') 

4rre2 ~ e-1 - v .::.Jro R. (p + r. k') =- iMp, k', 
y 

R. ( k') pk', P+l< p, = k'+x. p· 

(7) 

(8) 

We have already pointed out that the difference 
Ecp+K- Evp is a minimum in a few points Ki ( K). 
The function R ( p, k' ) can be seen to be large for 
large radius excitons only when p and k' are little 
different from Ki ( K ) • We shall find the function 
R ( p, k' ) in the neighborhood of the point Ki ( K) 
= Ki + ~. Ki = Ki( 0 ). In that region Eq. (7) is of 
the form 

x(p-K;-A)v(P-.K;-A)p.}R. (p, k') 

~ 4rre2e-1 , • 
- .::J~ R. (p + '(, k) =- tMp, k'· 

"( 

(9) 

We use the fact that IC and the quantity A. which 
is proportional to IC are small, and expand the ki­
netic energy (the sum within the square brackets) 

in Eq. (9), retaining no terms beyond those quad­
ratic in K and p -Ki. Equation (9) then becomes 

·to E r. · 1 -11i2 r -1 
{- lr~S + 0 + rtV'Y. +2M"~ XcxX,s +2t-tcx.ah2 (p- K;- A)o. 

X (p- K;- A)~} R.(p, k') 

'I.' 4rre•e-1 , . 
- .::Jrzy R. (p + '(, k) = - IMp, k', 

"( 

(10) 

(11) 

(12) 

One checks easily that the solution of Eq. (10) is 
of the form 

R. (p, k') 

{ ~ ~ cp,. (p -Kr- A.) cp: (k'- Kr-A.) 

l V n s + i (ron+ v'"') ' 
~ . ' I ~ ~ cpn (P-K;-A.) !pn (k _-K;-A.)' 

~ V n s + i (ron+ v'"') 
p, k' ~ 1(1 + A. 

(13) 

In all other cases R vanishes. In (13) li wn = E0 

+ %Mapli2KaKJ3 +En and the wave function cpn(q) 
of the n-th exciton state satisfies the equation 

-1 1i2 "1 4rre2 e-1 
fl:z:'l 2 q,.q[l<pn (q)- .::J7 y<pn (q + y) = Bn<jln (q) (14) 

"( 

with eigenvalue En· 
If we take the Fourier transform of Eq. (14) we 

arrive at the normal Schrodinger equation, in coor­
dinate representation, describing the internal mo­
tion of the exciton. cpn(q) turns out then to be the 
Fourier component of the normalized wave function 
(,On ( r) in coordinate representation: 

<jln (q) = ~ eiqr<j;n (r) dr, ~ i.Vn (r) 12 dr = 1. (15) 

4. THE HIGH-FREQUENCY CONDUCTIVITY AND 
THE ABSORPTION COEFFICIENT 

Using Eqs. (13), (8), (5), (2a) and equations 
similar to (4a) and (4b), we find the high-frequency 
conductivity avp. ( K, w) 

CivfL (Y., w) = £~1 (2:rtf6 

~~d dk'cp"(P-K;-A.)cp:(k'-K,-A.) · (k' )·*( ) 
X.4.,J P . i ]p. , Y..Jv p, Y. • 

n,i s+t(ron+v"') 

(16) 
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For allowed transitions, when jJ..t ( Ki, 0) '¢ 0, 
the expression for a VJ..t can be simplified, since 
cp ( p - Ki -A) is different from zero for large 
radius excitons only in a small region of p-space 
near the point Ki + A. One can then neglect the k' 
dependence of the quantity jJ..t (k', K ), and remove 
it from under the integral sign at the point Ki. 
The exciton high-frequency polarizability 
XvJ..t ( K, w) = aVJ..t ( K, w )/iw is then of the form 

r~.c (Ki) = ~ 'ljl;.Ki (r) r·' '¢cKi(r) dr. (17) 
v: 

This expression has the same form as the equation 
for the polarizability of a gas, with this difference 
that the quantity I C'Pn ( 0) 12 plays the part of the 
concentration of the gas, so that the average dis­
tance between the "gas molecules" is equal to 
the exciton radius. 

If we take relaxation processes into account we 
are led to a finite value of v in Eq. (17). v is then 
the reciprocal of the relaxation time. One obtains 
easily from Eq. (17) in that case an estimate for an 
expression for the exciton polarizability xz in one 
of the exciton absorption lines 

(18) 

where r a is a quantity of the order of the inter­
atomic distance and re the exciton radius. 

If xz 2:: ( 41!' )-1 E one must solve a dispersion 
equation to find K as a function of w and take 
the exciton polarizability into account. The pic­
ture of the propagation of light through the crystal 
becomes then complicated (see references 6 and 7). 
In the present paper we restricted ourselves to the 
case Xz « (47r)-1 E. In that case K = (w/c) fE. 
One obtains easily from Eq. (17) the absorption 
coefficient Xx( K, w) for an electromagnetic wave 
which is polarized along the x axis 

h " - I rx /2 v 
'U' . (x ) = ±:rre- \."1 1 - (0) 2 '1;'1 . I vc i 
wLc , (I) n (1)0 LJ {jln · LJ · • 

>c n · · i v2+(w-wn+vl.,_)2 
(19) 

As before, we have assumed here that E » 1. 
The authors express their sincere gratitude to 
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