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A study is made of Raman scattering of x rays in crystals accompanied by the formation of 
excitons, i.e., "normal" electromagnetic waves in the given crystal. The plasmons (longi­
tudinal plasma waves) in metals and dielectrics are a special case of excitons. The meas­
urement of the energy of the scattered x-ray photons at various scattering angles may be 
an effective method of determining the energy of the excitons as a function of the wave vector. 

l. As is well known, the excitons occurring in op­
tical studies are nothing but the "normal" electro­
magnetic waves propagated in the given medium.1- 4 

Hence, the determination of the exciton energy 
liw (k) as a function of the wave vector k is equiv­
alent to measuring the refractive index n of the 
crystal for waves of frequency w propagated in 
the direction of k. 

However, for a number of reasons, it is difficult 
to work in optics with values of n ~ 10, that is, 
with k = 2rr/ A= 2rrn/i\ ~ 106 cm-1• (Here i\ = 2rrc/w 
is the wavelength in vacuo; we assume for esti­
mates in the optical region that i\ ,..., 5 x 10-5 em; 
A is the wavelength in the given substance.) Cor­
respondingly, it is difficult to determine one of the 
fundamental characteristics of excitons, the func­
tion w(k), when k ~ 1-3 x 106 cm-1• Inparticu­
lar, no one has yet given by optical methods a 
proof at all convincing of the existence of a "new" 
type of waves in crystals in the vicinity of absorp­
tion lines. 5•6 (The "new" waves merely amount to 
the fact that, when we take into account the spatial 
dispersion at the given frequency w in the given 
direction, we find that not two, but a larger number 
of "normal" electromagnetic waves can be propa­
gated. For further detail, see references 6 and 7.) 

In view of the above, the use of non-optical 
methods to determine the function w ( k) is of 
great interest. If the exciton has a character es­
sentially related to the vibrations of ions, as is 
the case in ionic crystals for the so-called optical 
vibrations,* an effective method of investigation 

*Of course, a terminology in which every type of electro­
magnetic wave in the medium (or photon in the medium) is 
called an exciton may sometimes be inconvenient. We shall, 
however, use it here. We shall also1 refer to the so-called 
plasmons, i.e., longitudinal electromagnetic, or more pre• 
cisely, "electric" waves, as excitons. For more detail on the 

relation between the theory of excitons and crystal electrody­
namics, see reference 8. 

may be the study of inelastic neutron scattering. 9 

We note that this method is especially effective in 
the study of acoustic lattice vibrations. However, 
in the case of excitons of the "electronic" type, 
weakly bound to the lattice vibrations, we may rely 
on other methods: the measurement of discrete en­
ergy losses during passage of electrons through 
thin films, and the study of Raman (inelastic) 
scattering of x rays in crystals. It is the latter 
phenomenon which we shall consider here. 

2. Obviously, the topic here is the measurement 
of the frequency w0 of x rays scattered at an angle 
(} by a crystal, with generation of an exciton. (The 
frequency of the incident radiation is w0; (} is the 
angle between the wave vectors of the scattered and 
incident waves k~ and ko· ) From the conservation 
laws we have (neglecting the absorption of excitons, 
which will lead to a smearing of the pattern) 

ro = ro0 -ro~, k = k0 - k~, 

2A sin (6/2) = (2A/n (ro)) sin (6/2) = 1.0 = 2nc/ro0 , (1) 

where, in deriving the latter expression, we have 
taken into account the fact that n ( w0 ) RJ 1, and 
w « w0.* 

Because of the crystal anisotropy, the frequency 
w will depend, in general, for a given angle (} and 
crystal orientation, on the azimuth angle as well 
(i.e., on the direction of the vector k for the given 
(} ). In addition, of course, the frequencies w (k) 
differ for excitons of differing types, e.g., of dif­
ferent polarization. If we assume i\.0 ,..,. 1 - 3 A, 
and choose the lowest attainable angles ( (},..,. 10'), t 
then A"' (3-10) x 10-6 em; for (} ..... 1°-3°, we 
already find that A "' 2 x 10-7 -2 x 10-6 em, or 
k = 2rrn/i\,..., 3 x 106 -3 x 107 cm-1• 

*With regard to radiation scattered in the vicinity of a 
Bragg maximum, see below. 

trhe authors are grateful to V. V. Shmidt for information 
on the experimental limitations. 
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Typical energy values for excitons lie within 
the limits 'liw ..... 0.1 - 10 ev. We may point out 
for comparison that in scattering by free electrons 
'liw ~ ('liwo /2mc2 ) e~wo. Thus, if e = 1 o and A.o 
..... 3 A, then the energy loss of the x-ray photon 
'liw ..... 4 x 10-3 ev. The resolving power of x-ray 
spectroscopic apparatus in energy terms is at 
most only ...... 0.3 ev (at A.0 ..... 3A); this limits 
considerably the possibilities of the method, but 
still, when 'liw ~ 0.5-1 ev, we may hope to ob­
tain valuable information on the function w (k), 
provided that the intensity of the Raman scatter­
ing is sufficient.* 

3. The physical picture is especially clear in 
the limiting case in which the frequency of the 
x-rays is large in comparison with all character­
istic frequencies of the medium. In this case, as 
is known (see, e.g., reference 11), the effective 
coherent-scattering cross-section for unpolar­
ized radiation is given by the formula 

1 + cos2 61 1 12 da = r~ 2 ~ N 0 (r) eikr dr dQ, (2) 

where N0(r) is the time-average electron density, 
r 0 = e2/mc2, and d~ =sin 8d8dq~. 

We may obtain this result by the quantum­
mechanical approach by taking the expression 
(e2/2mc2 ) N0(r)A2(r) for the interaction energy 
in the Hamiltonian in this problem. Here, A is 
the vector potential of the radiation field. 

In the study of Raman scattering with the par­
ticipation of an electromagnetic wave in the me­
dium (an exciton), we can no longer consider the 
concentration N ( r ) to be fixed, and we write 

N (r) =No (r) + N' (r); 

4'JteN' (r) = div Ei = - i (kj) £~ exp [i(wJ t- kr) I. (3) 

Here Ej(r) = JE1 exp [i (wjt -k•r)] is the electric 
field in the "normal" wave (exciton) of type j 
being studied (the unit vector j defines the polari­
zation of the wave). t The energy of this wave can 

*From the quantum viewpoint, the well-known thermal dif­
fuse scattering of x-rays is Raman (inelastic, incoherent) 
scattering involving phonons. Raman scattering involving the 
lattice (or the ions) will not be considered below. For excitons 
having 1icu < 0.1 ev, the frequency shift may be measured by 
means of the Moss bauer effect. 10 

tThe "normal" waves used here, with Ej = const, are the 
solutions of the field equations in which the dielectric-con­
stant tensor eii (cu, k) is introduced. For wavelengths com­
parable with the lattice parameter of the crystal, such a treat­
ment is no longer accurate, since for the "normal" waves in 
the crystal, the amplitudes E1 are periodic functions of r. 

be represented in the form of the energy of an 
oscillator 

ai (k) E;Ei V = (p; Pi + wJ q; qi) = 2wJ q; qi = liwi l, (4) 

where the last result is obtained by quantization 
( l = 0, 1, 2, ... ) ; V is the volume of the crystal, 
and the coefficient a ( k) can be calculated from 
a consideration of the energy of the system. 

The energy of interaction with the x rays is 
now equal to [see Eqs. (3) and (4)]: 

(5) 

If l » 1, the problem becomes classical, and is 
reduced to the scattering of transverse electromag­
netic waves ( x rays) by waves having a longitudi­
nal field component (e.g., in an isotropic plasma 
only plasma waves are of interest, whereas in a 
magnetoactive plasma all waves are in general re­
sponsible for the scattering7 •12 ) • Crystals in an 
initial equilibrium state contain practically no ex­
citons, and thus, we must consider the transition 
from the state l = 0 to the state l = 1 [see Eq. 
(4)]. The matrix element for such a transition is 

(0 i qj/"'it 11) =Vii j2Wj. 

Here we need not solve the x-ray scattering prob­
lem anew, since by starting with Eq. (5) with qj 
= 0, we can derive Eq. (2), while the calculation 
with qj r! 0 is essentially the same. 

Thus by using Eqs. (2) and (5) together, we find 
the cross section for the Raman scattering: 

da = r21 + cos2 6 (k")2 Vliwi dQ 
k o 2 J (4ne)2 a1 

= , 2 1 + cos2 6 (kJ")2 1iw1 N0 V dQ 
0 2 4:rta-mw~ ' 

I p 

(6) 

wher~ wt = ( 41Te2 /m) N0 is the "plasma frequency," 
and N0 is the mean electron density. 

For incoherent scattering by free electrons, we 
have in Eq. (2): 

(with the period of the lattice). By writing the field in the 
"normal" wave in the form 

E1 = E~k (r) exp [i (w1 t- kr)), 

where Ejk(r) is a periodic function of r (with the lattice pe­
riodicity), we can calculate the Raman scattering in a way 
analogous to that used in the body of this article. The very 
important qualitative difference which arises here is the ap­
pearance of Raman scattering with ko-~=k+b, where b is 
an integer reciprocal-lattice vector. The authors are grateful 
to L. V. Keldysh for a discussion of this question. 
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j~N0 (r)eikr drj2 =N0 V, 

since N ( r) = 2::) o ( r - ri). Hence, the ratio of the 
k 

cross-section in Eq. (6) to the cross-section for 
scattering by free-electrons da0 is equal to 

where 1/J is the angle between k and j, and Eq. (1) 
has been used: 

k2 = (2roo/c)2 sin2 (6/2). 

In the propagation of waves along corresponding 
symmetry axes, or in any direction in cubic crys­
tals (neglecting spatial dispersion6 ), the "normal" 
waves are divided into transverse and longitudinal 
waves. For transverse waves, k • j = 0, and thus 
in the present approximation, no Raman scatter­
ing will arise [see Eqs. (6)- (7)]. 

Longitudinal waves (for which dQ"k ¢ 0 ) are 
commonly called plasma waves (plasmons ), since 
they are analogous to the longitudinal waves in an 
isotropic plasma. For plasma waves in a gas of 
free electrons, neglecting spatial dispersion (this 
means that w~ » v~2, where v0 is some mean 
electron velocity), Wj = wp, and aj = ~ 1r (see, 
e.g., reference 7). However, in the case of any 
given optically-isotropic medium (metals, dielec­
trics) having sufficiently weak absorption in the 
given frequency range, we find for long longitudi­
nal (plasma) waves 

ai = (w/4n) (ds/dw) "'h 

where € ( w) is the dielectric constant of the me­
dium, and dEidw is evaluated for w = wj (for free 
electrons, € = 1 - w~ I w2). 

In the case of free electrons, we have 

da,..,Jda0 = 1ik2/2mwp = 2 (nwofmc2) (w0fwp) sin2 (6/2). (8) 

Equation (8) is equivalent to the corresponding 
formula derived in the classical calculation of scat­
tering by a plasma wave N' exp [ i ( wpt - k • r)] 
having an amplitude 

IN' I = v nkWol2mwpV: 

The wave amplitude has this value if we set E*EV I 
21r = liwp. 

If (} .... 3°, liwo-. 5 X 103 ev (A.o"" 3A), and liwp 
.... 10 ev, the ratio dO"k,plda0 "" lo-2• Obviously, it 
follows that the intensity of the Raman scattering 
is sufficient for reliable measurement, provided 
that the actual values of the coefficients 11 aj and 
cos2 1/J in Eq. (7) are not much smaller than the 

values used in deriving Eq. (8): 1laj = 271", and 
cos2 1/J = 1. 

4. In order to take into account the role of bound 
electrons and to specify the type of exciton consid­
ered, we shall study the model of a molecular crys­
tal. In this case, the operator H' for the interac­
tion with the radiation field can be written as a 
sum4 

H' = H<1> -t- H<2 >; 

H<1> = -- _!__ ~ A (ri ) P~~ 
me .L.J na ' 

na., ina 

na, ina 

(9) 

(9a) 

(9b) 

In Eqs. (9a) and (9b) rha is the radius vector of 
the i-th electron belonging to the na-th molecule, 
pi a is its momentum ( n is an integral lattice 
v~ctor, and a is the number of the molecule in 
the unit cell, a= 1, 2, .•. a). 

The operator HU> gives the contribution to the 
intensity of Raman scattering of x-ray photons 
with formation of excitons only via transitions be­
tween intermediate states. It is easily seen that 
in calculating this contribution, the only appreci­
able interaction can be that of the x-ray photons 
with the strongly-bound electrons, whose binding 
energies are of the order of the x-ray photon 
energy. 

The process of Raman scattering of x-ray quanta 
by individual atoms with production of plasmons has 
already been studied by Sobel'man and Fe1nberg, 13 

who took into account the intermediate states of the 
K electrons.* It follows from the formula for the 
ratio O"k pla0 given in reference 13 that intermedi­
ate state's of the K electrons may contribute appre­
ciably to the Raman-scattering cross section only 
in case that the energy of the x-ray photon is very 
near to the binding energy I Eo I of the K electron. 
In this energy range, however, difficulties may 
arise in the observation of Raman scattering, owing 
to the nearness of the absorption edge. However, if 
ltiw0 -I Eo II "" liw0 the contribution to the cross 
section calculated in reference 13 turns out to be 
small ( O"k,p I an~ 10-7 ) in comparison with the 
contribution due to direct transitions effected by 
the perturbation H<2>. [Thus, it follows from Eq. 
(8) given above that O"k,pla0 "" 1.] Hence, we shall 
limit ourselves below to calculating this fundamen-

*We note that reference 13 also considers the excitation 
of a plasmon upon absorption of an x-ray quantum. Of course, 
such a process may also involve the generation of an exciton 
of a more general type. However, in studies of x-ray absorp­
tion there is practically no opportunity to distinguish the ex­
citons in terms of their momenta. 



X-RAY SCATTERING IN CRYSTALS WITH EXCITON FORMATION 641 

tal contribution, in complete agreement with the 
calculations given in Sec. 3, having in mind an en­
ergy range of x ray quanta sufficiently distant 
from the absorption edge. 

The vector potential of the x ray radiation 
field has the following form:14 

A (r) = ~ ., /Zrtc'ti I ·(a ·eiqr +a+. e+iqr) (10) 
..:::.J V V qc qJ q1 q1 • 
qi 

where lqj ( j = 1, 2) are unit vectors defining the 
transverse polarization of the photons ( qj ) , and 
aQj and aQj are operators for the production and 
destruction of the photons ( qj ) . Substitution of 
Eq. (10) into (9b) leads to a quadratic form with 
respect to the operators for production and de­
struction of photons. However, in this expression 
only the terms proportional to akoja~0j' give non­
zero contributions to the cross section of the proc­
ess being studied. If j and j' denote the polari­
zation of the x-ray quantum before and after scat­
tering, the perturbation operator which we must 
take into account is: 

H<2>(k . k' '') o I • 0 1 

F (n, a) = ~ exp {i (k0 - k~. ri)} (12) 
ina. 

depends on the coordinates of the electrons of the 
molecule ( na ) with respect to the lattice point at 
which this molecule is situated. 

In order to calculate the value of the cross sec­
tion, we must know the wave function of the elec­
trons of the crystal in the ground state as well as 
in the excited state accompanying the presence of 
the exciton. Neglecting retardation, which is not 
very substantial here,* these wave functions have 
the following form in the Heitler-London approxi­
mation (the weak effect of intermolecular ex­
change of electrons is not taken inte account 
below): 

<P~a = q>~a; II q>~~. 
m[~+na 

Here, 1.1. is the number of the exciton band, k is 
the wave vector of the exciton, and cp 0 and cpf are 

*Exciton states corresponding to sufficiently high quasi­
momentum values (see Sec. 1) exhibit basically the expected 
properties of excitons derived without taking retardation into 
account.,_. 

the wave functions of the molecules in the ground 
state and in the f-th excited state (for more de­
tail, see reference 15). 

The matrix element of operator (11), as con­
structed from the functions of the initial and final 
states, is equal to 

<koi; 0 I H(2) I k~j'; f1k) 

2e2 :n:li (lk i I , . ) 
o koi' * . , -----===· ~ Bflp. (k) Fmfl(n, a) exp {t (k0-ko, rna) 

mcV V V koko na, m{l 

- ikrm(l}. 

where 

n fl (n, a) =(<P0 IF (n,a) \ <Pht{l)· 

However, since [see Eq. (13)], 

(14) 

(15) 

Fm{l(n,a) = (q>~a\F(n,.z)\cp~a)bna.m{l=Fabna,m{lo (16) 

(here 6x,y = 0 if x ;e y, and 6x,y = 1 if x = y), 
we find that 

(17) 

where b is an integer reciprocal-lattice vector. 
The Raman-scattering cross section has the 

form (see reference 14): 

dan= (2:n:V I lie) I (koj; 0 I H<2> I k~j'; !l. k0 - k~) \2 P•'• (18) 

where the number of final states per unit energy 
interval is 

P•' = (k~) 2 (2:n:)-3 V (dkJde') dQ = (k~) 2 (2:n:)-3 (V/1ic) dQ; 

Here we have taken into account the fact that E' 

= nk0c = nw0• Hence, upon substituting Eq. (17) 
into (18), summing over the polarization j', and 
averaging over the polarization j, we find that 

dan= r~ c~) 1 + ~052 8 N I ~B:p. (k) Far dQ. (19) 

If the wavelength of the exciton is large in com­
parison with the molecular dimensions, then for 
b = 0:* 

*Processes with b =f, 0 and k « b will give rise to inelas­
tically scattered photons concentrated in the neighborhoods of 
the Bragg maxima (of course, it is assumed that the crystal is 
properly oriented). However, since in such cases the change 
in the wave vector of the photons is great, the quantities \Fa\ 
[see Eqs. (12) and (16)] will be considerably lower than in the 
case b = 0. In addition, since the quantities \Fa\ decrease 
with increasing \b\, the largest cross section will be found in 
the neighborhood of the first Bragg maximum (the smallest 
value of \b\). From the standpoint of observing scattering 
near the Bragg maxima, "loosely-packed" crystals, in which 
the lattice parameter is considerably greater than the dimen­
sions of the molecules, are of interest. 
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Fcx~i(Pfl-(k) k)/e; (20) 

Here 

"' 
is the amplitude of the dipole moment correspond­
ing to the exciton state J.Lk, and 

where Pna is the dipole-moment operator of the 
molecule na. 

Thus, 
dcrk = (r~/2e2~) (k~/k0) (1 +cos26) VIPfl-(k} l2 k2cos211'dQ, 

(21) 
where ~ is the unit-cell volume, and 'It is the 
angle between the vectors PJ.L(k) and k. 

Upon applying Eq. (21) as before, we find that 

d'3k - I k~ ) ( (!)~ ) (I p fl. (k) 12 • 2 6 2 
dcro- 16n \To" ~ me• !'J. ) sm 2 cos 11', 

p 

da0 = t ,g (l + cos2 6) N0 VdQ, ro~ = 4ne2 Nofm. (22) 

It follows from Eqs. (21) and (22) that the calcu­
lated cross-section is proportional to the oscillator 
strength of the transition in the molecule. Among 
molecular crystals, the most intense dipole transi­
tions are exhibited by anthracene (the second elec­
tronic transition 16 ) , for which I P J.L I I e :::::: 3 x 10-8 

em. In this case, assuming that ~ ::::::. 125 x 10-24 

cm3, 8:::::: 3°, cos2 'It:::::: lfa, k0/k0 :::::: 1, and w0 /wp 
:::::: 5 x 102, we find that dU}{/da0 :::::: 4 x 10-3• At 
8:::::: 30°, the ratio dU}{/da0 :::::: 4 x 10-1• 

It follows from a comparison of Eqs. (22) and (7) 
that for Frenkel' excitons the quantity aj [see also 
Eq. (4)] is inversely proportional to the square of 
the matrix element of the dipole-moment operator. 
Also, aj becomes infinite for those excitons which 
cannot be excited by light in the dipole approxima­
tion. In the latter case, according to Eq. (6), dUk 
- 0; in the present approximation this is due to 
the vanishing of the amplitude of the electric field 
[see Eq. (4) for aj- oo ]. 

Of course, Eq. (22) can be derived by first find­
ing the dielectric-constant tensor Eij( w, k) for our 
model and then calculating the coefficient aj enter­
ing into Eqs. (4) and (6). 
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