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An expression is obtained for the variation of the adiabatic invariant in reflection of a 
charged particle from a magnetic mirror; the diamagnetism of the plasma is taken into 
account. The limiting case of complete expulsion of the magnetic field from the plasma, 
corresponding to high plasma densities, is considered. 

THE variation of the adiabatic invariant of a single 
particle in a magnetic field has been found in ref­
erence 1. The results obtained in this work apply 
for low plasma densities in a mirror system, 
where the self magnetic field of the plasma can 
be neglected. It is of interest to consider the 
effect of the self magnetic field of the plasma on 
the motion of a single particle. An accurate analy­
sis of this problem is extremely complicated be­
cause it is necessary to treat the motion of the 
particle in a self-consistent field. For this reason 
we consider the limiting case of high density and 
temperature. 

Because of the high density, the magnetic field 
is completely expelled from the region occupied by 
the plasma. We assume that the magnetic field 
does not enter the region occupied by the plasma 
and that it acts as a wall from which the particles 
undergo specular reflection.* Because the temper­
ature is high the variation in the adiabatic invariant 
due to collisions can be neglected. A model of the 
magnetic-mirror system being considered is 
shown in the figure. The unhatched region is occu­
pied by plasma while the hatched region is occu­
pied by the magnetic field. For simplicity we con­
sider the plane problem. The extension to the 
axially symmetric case does not involve any funda­
mental difficulties. 

Let the equation of the curves which bound the 
region occupied by the plasma be of the form 

y = ±f(x). (1) 

The broken line in the figure represents a portion 
of the particle trajectory. The adiabatic invariant 
is given by the expression 

I= 2
1n ~ PudY = 211:-1 mvf(x)sin a(x). 

!I 

Consequently, the adiabatic invariant suffers some 
variation when the particle is reflected from the 
magnetic mirror because the angle a is changed. 
We now calculate this variation. 

There are certain difficulties in the classical 
formulation of this problem (compared with the 
motion of a particle in a magnetic field) because 
even in the zeroth approximation the equation for 
the transverse motion is nonlinear. We shall use 
a method similar to that developed in reference 2. 
Specifically, we first solve the quantum­
mechanical problem and then take the limits which 
correspond to the classical case. In the quantum­
theoretical formulation of the problem the difficulty 
noted above is unimportant, as will be apparent 
from the behavior of the solution. 

To solve the quantum-mechanical problem of 
the motion of a particle in a potential well of the 
present configuration we use the same coordinate 
system used in reference 2. The new variables ~ 

and -'TJ are expressed in terms of x and y by 
means of the equations 

y 
71 = f(x)' 

(2) 

*The possibility of this formulation of the problem has been 
called to the attention of the author by B, V. Chirikov. 

It can easily be shown that the adiabaticity con­
dition for the problem is f' (x) « 1. Assuming 
that f is small, we write the Laplacian in the co­
ordinates ~ and 71, keeping second-order terms 
only: 
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L = n2 [f'2 --'- ___!___ f"f] L _j_ ___!___ [f'2 _ ___!___ f"flJ _j_ ( 2 _j_) 
1 'I I 2 0 ' t" 2 ' dl] \ T] Ol] 

- _ _If_ ~ ft lt'2 - ___!___ f"t] __£___} t a~ 1 2 o£ · (3) 

For our purposes it will be necessary to solve 
the SchrOdinger equation with the boundary condi­
tions 1/J = 0 for T/ = ± 1. The zeroth-approximation 
equation is of the form 

(4) 

Separating variables in Eq. (4) we obtain a family 
of wave functions normalized for a o -function 
energy: 

'¢n E = ZnE sin A-nT], 

ZnE = ( 2nkn:n•f f exp {i ~ knEd~}. 
k~E = 2mEIIi2 - 'J..~/f, A-n= Jtn. (5) 

For our purpose it is necessary to compute the 
transition amplitudes between different states (5) 
under the effect of the perturbation. These ampli­
tudes must be such that the squares of their 
moduli equal a dimensionless transition proba­
bility which represents the transition probability 
for the case of single passage of a particle through 
an inhomogenity (see Landau and Lifshitz )3• In 
order to obtain this transition amplitude the origi­
nal wave function must be normalized for unit flux 
while the final wave function must be normalized 
for a delta-function energy. With these require­
ments in mind we compute the matrix elements 
for the perturbation operator between states (4). 

We calculate only near-diagonal elements of 
the scattering matrix, which are of greatest mag­
nitude. The matrix elements for transitions be­
tween states with different parity in T/ vanish as a 
consequence of the parity of the perturbation. In 
calculating the matrix elements we assume that 
the greatest contribution in the integral over ~ 
is due to a simple pole of the function f ( ~ ) so that 

4n/ . { ."~ ro } 
an,n-1 = 3h zexp 2t~ vd~ ; an,n+l = -a·n,n-1· 

(6) 

Here, w = 7T2I/2mf2 is the frequency of the classi­
cal transverse motion and v = [ 2 ( E - Iw) m ] 1/2 
is the velocity of the longitudinal motion. In a way 
similar to that used in reference 2 it can be shown 
that the higher-order perturbations make only a 
small contribution compared with the first-order 
perturbation. 

To make the transition to the classical limit we 
form, following reference 2, a wave packet which 
descril>es the particle moving along the trajectory. 
To describe the trajectory and particle uniquely it 
is necessary to assign the adiabatic invariant L 
and the phase cp_ as x - - oo. This phase must 
be introduced into the wave functions in such a way 
that the resulting wave packet actually describes 
a classical particle with the given phase. This 
procedure makes it possible to avoid the ambiguity 
in Eq. (6) which results from the fact that there is 
no lower limit of integration. 

It can be shown4 that the integral in Eq. (6) 
assumes the following form when the ambiguity 
noted above is removed: 

X X 

I~ dx = I (~ - ~) dx + ~ x + (J) • (7) j v j v v_ v_ '-
-oo 

The minus subscript indicates that a given quantity 
is taken as x- - oo. The meaning of the quantity 
cp_ is indicated in the figure. 

The classical adiabatic invariant is computed 
as the average over the packet of the quantity 
ti (n + Y2 ), where n is the transverse quantum 
number. Carrying out this jlVeraging process as 
in reference 2, we obtain the variation in the adia­
batic invariant: 

1+-L sn [· ( ·c· (!) ·)] - 1- = 3 R.e zexp 2t J v d, . (8) 

We see that the variation of the invariant is expo­
nentially small in the case being considered, as it 
is for the motion of a single particle in a magnetic 
field. 

When the region occupied by the plasma is 
asymmetrical with respect to the x axis; we can 
show by analogy with reference 1 that the expres­
sion for the variation of the adiabatic invariant 
differs from that given in Eq. (8): there is no 
factor of 2 in the exponential and the factor which 
multiplies the exponential is different. 
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