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The local field theory proposed by Bialynick.i-Birula is treated by a previously developed 
method. 3•4 The S matrix and renormalization constants are derived. It is proved that the 
charge renormalization is finite in all orders and does not contain logarithmic singulari­
ties. It is shown that the ultraviolet contribution results in a series with a finite sum, and 
that the Green's function series converges absolutely at low values of the time and has a 
branch point at t = 0, the singularity at zero being integrable. 

INTRODUCTION 

IN view of the still unsurmounted difficulties in 
the solution of the exact field equations in quantum 
field theory, the use of various models for an in­
vestigation of the intrinsic consistency of this the­
ory has become quite popular. An investigation of 
the Lee model1 has seemingly led to the conclusion 
that the theory is intrinsically inconsistent. It was 
shown later, however, 2 that the model was not self 
consistent because of the simplifications made to 
obtain an exactly solvable Hamiltonian. In particu­
lar, these simplifications violated the important 
requirement of crossing symmetry. 

In the present article we investigate, by a 
method previously developed, 3•4 the modified Lee 
model proposed by Bialynicki-Birula, 5 in which 
the crossing symmetry condition is satisfied. The 
solutions are obtained in the form of series in the 
renormalized constant ~m (~m is the physical 
parameter causing the mass difference between 
two fermion states in the model ) . The converg­
ence of this series is proved for the ultraviolet 
region E » ~. An important property of the 
model is the finite renormalization, in the case 
of a point interaction, of the charge in all orders 
in ~m. in contrast with the Lee model, where the 
well known zero-charge problem exists. 

The Green's function of the model considered 
has all the properties of the Green's function of 
the renormalized theory. 6• 7 Specifically, the re­
normalized Green's function is analytic in the t 
plane and has a branch point at t = 0; when g2jrr2 
< 1 there exists a Fourier transform of the Green's 
function, which admits of an expansion about the 
point g2 = 0. 

1. THE S MATRIX OF THE MODEL 

Bialynicki-Birula5 has considered a model of 
local field theory with fixed nucleon, in which the 
nucleon can be in two states of different mass (we 
shall call these, arbitrarily, proton and neutron 
states ) . The Hamiltonian of the system has the 
form 

H = m0 ('¢+'\jl) + ~ ~ dx : lnz (x) + (V<p (x))2 + tt~2 (x)]: 

+ g ('ljl+'t'J'Ijl) ~ dx <p (x) r, (x) + !J..m0 ('ljl+'t's'IJl), (1) 

where l{i = VpCp + vncn is the nucleon field opera­
tor, CN ( N = p, n) is the nucleon, annihilation op­
erator, VN is a spinor describing the nucleon, 

Vp = (~)' Vn = ( ~), 

1r (x) and cp(x) are the meson field operators, 
and r 1 and r 3 are the matrices of isotopic spin 
%. 

Noting that when ~0 = 0 we obtain the exactly 
solvable case of scalar mesons with fixed source, 
it is possible to consider perturbations in the con­
stant ~m0 without limiting the interaction forces 
between the nucleon and the mesons. By this 
method, Bialynick.i-Birula5 obtained the interest­
ing result that the renormalization of the charge 
is finite and contains no logarithmic singularities. 
From the point of view of the method which we bave 
developed earlier,3•4* the Hamiltonian (1) is of in­
terest because the Lappo-Danilevskii series coin­
cides here with the perturbation-theory series in 
the constant ~0, but the new method, unlike per-

*We denote throughout reference 4 by I, and the correspond· 
ing formulas in this paper will be designated (I, 4.2) etc. 
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turbation theory, makes it possible to obtain the 
n-th term of the series. 

Thus, let us consider the equation for the S 
matrix in the interaction representation. We seek 
directly the "adiabatic" sa matrix, so as to use 
formulas (I, 4.2) and (I, 4.3). In the ii1teraction 
representation we have 

iiJS"(t, t0)/at =H1 (t)e-"111S"(t, t 0), S"(t, t 0 ) lt=t, = 1, 

H, (t) = g ('ljl+-rl'ljl) ~ (t) + flm0 ('ljl+T3'1jl), 

Repeating in its entirety the procedure devel­
oped in I, (Sees. 1- 3), we obtain the following 
expression for the sa ( t, to) matrix: 

t q 

x: exp {- i ('ljl+T1'1jl) g ~. ds D
1 

e (~i-s)~ (s) e-a.Js}: 

I t 

X exp f- i~• ~ ~ ds1 ds2e-a.(/stl-f-\s,l) 

l I, t, 

X D1 e (~i- s1)!:. (s1- s2) e (~i- s2)} 

(2) 

X exp {-a± I ~1 1}. (3) 
1=1 

The resultant sa matrix is defined accurate to 
a phase-shift factor, and satisfies the equations 

S"(oo, -oo)IO>=IO), 

S" ( 00' - 00) IN) = / const;a.i N), (4) 

where I 0 > and I N > denote the vacuum and 
single-nucleon states of the zero-order Hamilto­
nian. The usual conditions of stability of the 
vacuum and of the single-particle states require, 8 

however, that 

S (oo,- oo) I 0) =I 0), S(oo,-oo)IN>=IN). (5) 

In all further calculations we shall use the adiabatic 
hypothesis, which enables us, in particular, to elim­
inate correctly the phase-shift factor, which is in­
determinate when a= 0 (reference 9), and conse­
quently to satisfy condition (5) (see Appendix A). 

We consider now the most important matrix 
elements of the S matrix. The eigenvalue of the 
energy of the single-fermion state is9 (see Appen­
dix B) 

E 1. <NIHS"-(0,-oo)IN> 
N= !ill 

<Z--+0 <N I sa (0, - oo) IN) 

00 co co 

= m + ONf:.m ~ (- ONf:.m)q~ dxl ... ~ dXqX1·. :Xq 

Further 

q=O 0 0 

0N = {+ 1 for the proton (N = p) 

· - 1 for the neutron (N = n). 

m = m - _!_ g2 "w-2 
0 2 .LJ ' 

k 

(6) 

(6') 

t:.m = flm 0 exp {- g 2 ~ w-3\. (6") 
k J 

The requirement that the observed m and &n 
be finite causes us to consider the bare quantities 
m 0 and &n0 as infinite. We note that the renor­
malization of m 0 coincides precisely with the re­
normalization for the case of scalar mesons in a 
field of a fixed source. After carrying out the re­
normalizations (6') and (6"), each term of the 
series (6) is finite subject to the condition* gz /rr2 
< 1 (see Appendix B for details). 

The renormalization constant of the fermion 
field Z~ is determined, in accordance with its 
probabilistic sense, by the square of the matrix 
elements 

z'; = 1 <N 1 N> 12 = 1 <N 1 s"' (O, - oo) 1 N> 12 

- 00 oo oo 

= z:c / ~ (oNt:.m)q ~ dx1 . .. ~ dxqx1 • •• Xq 
'.....q=O 0 0 

Here 

z:C = exp {- i g2 ~ w-3} 

is the value of Z2 for scalar mesons, and IN> 
denotes the single-nucleon state of the complete 
Hamiltonian. 

Let us emphasize that the constant Z~ in this 
model is equal to the product of the constant z~c 
of the scalar neutral theory with fixed source and 

*Bialynicki·Birula5 gives an incorrect condition for the 
finiteness of the terms of the series g2 I 4772 < e-1 • 
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a series of finite terms, so that when g2 I 1r2 < 1 all 
the terms of the series are finite. Later on this 
circumstance will enable us to draw some conclu­
sions regarding the constant Z1• 

The renormalized coupling constant is defined 
as usual: 

gr ( , + I g = Pi'IJ 't'1'1J n) 

_ 1· <P l S" (oo, 0) 1jJ+-r11jJS" (0, - oo) 1 n> 
-1m ,, 

<Z-+0 [ <P l S" (oo, - x) I P) <n Is~ (oo, - oo) In> I,, 
00 00 o:: q 

= I_;__~ (ilm)2q~ dx1 ... ~ dx2q-1X1 ... X2q-1 ~ X2i-1 

q~l 0 0 i~l 

()2q-l 

>< "'ax_l_· -. ~. a'x-2q---l 

x exp {2g2 ~ ~3 2~1 ~1 ( -J)I+m exp (- w i~ xi)}. (8) 

The situation in this model differs appreciably 
from that obtaining in the charge theory [see 
(I, 4.10) ff.], for at the point g2 = 0 all the inte­
grals are bounded, in contrast with expression 
(I, 4.12). Therefore, when perturbation theory 

2. ON THE CONVERGENCE OF THE SERIES FOR 
Ep, zr, AND gr 

The proof of the convergence of the series (6) 
- (10) is exceedingly complicated, since an esti­
mate of the n-th term calls for extremely fine ap­
proximation methods, without which one cannot 
judge the behavior of the series as a whole. How­
ever, the series for Ep, z¥, and gr can be 
summed in the generalized sense10 (we shall refer 
to this as the E-sense ), the gist of which we shall 
explain by using the series for Ep as an example. 

Let us consider the series 
co co 

bm = ~ (-' t.m)q~ dx1 ... 
q~o 

is used here, i.e., when the solution is represented 
as a series in g2, no logarithmic divergences in 
the maximum cut-off momentum takes place, such 
as occur in the local field theory. In this connec­
tion the given model does not reflect, in our opin­
ion, some of the fundamental difficulties inherent 
in the exact equations of mesodynamics. 

The renormalization constant of the vertex part 
z1 can be obtained from the well known equation 

gr = Z~1 (Z~ Z~(' Z'f'g. 

In our case the renormalization constant of the 
meson field z3 is equal to unity. Using (7) and 
(8), we can conclude that the constant z1 has a 
structure 

(9) 

where a ( g2, ~) is a series in ~m, all the terms 
of which are finite when g2/1r2 < 1. 

Let us write down the matrix element for the 
elastic scattering of a meson by a nucleon (see 
Appendix A): 

After integrating by parts in each term, we obtain 
(see formula (B, 8) in Appendix B) 

co co 00 q 

bm = ~ (t.m)q~ dx1 . .. ~ dxq fi (1- Qi) Fq (xlt ... , Xq}, 
q~o o o i~l (12) 

where the operator Qj is defined by the equation 

QjFq( .. . , Xj' .. . ,) = Fq( .. . , oo, .... ). 

We consider a different series 
00 00 00 q 

bm• = ~ (t.m)q~ dx1 • •. ~ dxq exp (- e ~ xi) 
q~o o o J=l 

q A xrr (1-Q;}Fq{Xlt ... , Xq}, (13) 
i=l 

which becomes equal to (12) when E = 0. It can be 
shown that when E satisfies the inequality 

00 

Am \' 8 <I- t.m ~ dxe-•x F1 (x), 
0 

the series (13) is bounded by the quantity (see 
Appendix B) 

(14) 
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00 -1 

bm•<{I-D.m~ dxe-•x[F1 (x)-ll} . (15) I ~ -1 I< 2 (11m) 2 r dx x[FI (x) 

As E- 0, the left half of (15) goes into the original 
series (12), while the right half has a finite positive 
limit when 

00 

{).m ~ dx [F 1 (x)- l] <I. 

This procedure signifies that the series (11) is 
summable in the general sense* ( €-sense) when 

00 

11m~ dx [F1 (x) -Il <I 
0 

and its sum (in the E-sense) is bounded by the 
quantity 

00 -1 

bm<{I-D.m~ dx[Fr(x)-1]} . (16) 

The series for zf and gr are also summed in the 
€-sense. We cite the result for the sums (in the 
€-sense) 

co -2 

z;<z:c{I-D.m~.dx[Fl(x)-1]} , (17) 
0 

0 

(17') 

Let us discuss the physical meaning of summa­
tion in the E-sense. We have seen that the series 
(13) converges in the usual manner at sufficiently 
large E [condition (14)] but the series (13) differs 
from (12) in that the contribution from the large 
values of the time (large Xj ), i.e., from low ener­
gies, is smaller. Consequently, the contribution 
from the ultraviolet region is found to be sum­
mabie to a finite quantity, which is unexpected 
from the point ofview of local field theory. Thus, 
the convergence of the series in the E-sense pre­
supposes that the contribution from large times 
(low energies ) is not large enough to violate the 
summability of expressions (6)- (10). 

In this connection, it is interesting to investi­
gate the behavior of the Green's function for small 
terms, i.e., in the ultraviolet region. The Green's 
function is defined as 

oo t ,, eq-1 

G (t) = (0! T {'ljJ (t)'ljJ+(O) s ( oo, - oo)} I 0) = z~ Gsc(t) 2; (- iTa11m)q ~ d£1 ~ d£2 . . . ~ d£q exp {-g2 ~ ~3 
q=O 0 0 0 k 

q q l-1 . } 

X [ ~1 (- l)l (e-'"' (t-~l) -e-'"'~l) + 2 ~2 ~1 (- I)t+me-'"' <am-at) J ' 

Gsc (t) = e (t) e'-imt exp { + g2 2; ~3 e-tr.ot}· 

----~k----------------------~--------------
(18) 

The function Gsc ( t) is the Green's function of the 
scalar neutral theory, and behaves as t-g2/41T2 at 
small values of the time. 11 

It can be shown (see Appendix D) that the series 
in ~m converges absolutely at small values of t 
(Jlt « 1 ), provided that g2/1T2 < 1 and has a branch 
point at t = 0. Thus, the function G ( t) has for 
t = 0 a singularity which is integrable because of 
the condition g2/1r2 < 1, which makes the Fourier 
transform possible. 

CONCLUSION 

The proposed example of a model with finite 
charge renormalization shows another possibility 
(compared with the Lee model) which can be re­
alized in the rigorous theory. In our opinion, how­
ever, this model also fails to reflect the true situ­
ation in field theory, since an investigation of more 
complicated models (see reference 4) leads appar-

*The method proposed is regular, i.e., convergent series 
such as ( 11) are summed to their usual sum. 10· 

ently to a conclusion that the exact solution has a 
singularity g2 = 0, a Taylor-series expansion about 
which leads to additional divergences. As already 
noted above, the model considered here does not 
have such a property. 

In conclusion, the authors express deep grati­
tude to Prof. D. I. Blokhintsev for continuous in­
terest in the work and for stimulating discussions, 
and also to L. G. Zastavenko for a discussion of 
the mathematical problems. 

APPENDIX A 

Since the sa matrix is specified in the form of 
a series, the matrix elements are presented in the 
form of a limit of a ratio of two series as a- 0. 
It is found that if one series is divided by the other 
and terms of equal powers of ~ collected, the 
phase shift cancels out in the terms obtained in 
this manner and consequently one can go in each 
term separately to the limit as a - 0. 
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Let us illustrate this method of eliminating the 
phase shift by an example of the matrix element of 
the scattering of a meson by a nucleon [see for­
mula (10)]: 

00 

co ~ (- ibNL'im0)q B;('r) 

Mt+-i (wt) = }' ~ dTe -iwt ~ lim ..:cq=-~=--------
-twf -oo a-.o ~ (- ib.vL'imo)qb; (A.l) 

q=O 

00 co 

B; ('c) = * ~ d~1 . , . ~ d~q 
-oo -oc 

00 

X exp {- i~2 ~~ ds1ds2e-a(!s.l+ls,l) 

-oo 

Q 

X D1 e (~;- s1) ll (s1- Sz) e (~;- s2) }· (A.2') 

00 co q 

b~ = ;, ~ d~1 ... ~ d~qexp {-Cl ~ i ~;\ 
-oo ~oo J=l 

co 

- i~• ~~ dsldsze-" <Is, I+ I s,p 

-oo 

X g
1 
e(~;-sJ)Ll(si-sz)e(f;-s2) }· (A.2") 

The integral in the exponential function is 

X .n e (~ •• - ~;,) exp (- iw I~.,- ~ •. 1 )}· 
/z.PY2 

(A.3) 

The first term is the same for all terms of the 
series and therefore cancels out. 

The presence of a phase shift in the expression 
for the matrix element manifests itself in the fact 
that the integrals with respect to time (with re­
spect to ~j) diverge linearly at infinity when a 
= 0. However, as stated above, a series that rep­
resents a ratio of series that diverge when a = 0 
contains integrals that are finite when a = 0. This 
circumstance is due to the fact that the divergent 
integrals are grouped about each power of ~ in 
such a way, that the infinities cancel out. 

The regularization procedure is as follows. We 
change in the integrals (A.2') and (A.2") to integra-

tion over the simplex and make a change of vari­
ables 

1-1 

~1 = ~. ~~ = ~ - ~ x;, (A.4) 
i=1 

Then 
00 00 co 

B; ('t) = ~ d£ ~ dXI ... ~ dXq-1 
-co o o 

X exp {-a. (1 ~I+~:/~- ~1 X; j)} 
~1 I I 

X e (~) E (~- T) n E ( ~- ~ X;) E ( ~- T - ~ X;) 
1=1 J=l J=l 

co 00 co 

b; = ~ d~ ~ dx1 ... ~ dXq-1 
-co o o 

X F q-dx1 , ••• , Xq-1) (llmjllm0)q 

where 

Fq-1 (Xt. ... , Xq-1) 

(A.5) 

q-1 I l } 

= exp {2g2 f ~. ~1 ~1 (- l)1+m exp (- iw ~m x;) . 
The integral of the function Fq_1 diverges linearly 
at infinity with respect to any argument Xj, but the 
function Fq_1 ( ••• , Xj, ... )- Fq-i ( ... , oo , ••• ) is 
already integrable with respect to Xj at infinity. 
We note further that 

Fq-1 (Xt. ... , Xj-1> oo, Xj+I· ... , Xq-!) 

= F;-l (Xt. ... , X;-I) Fq-j-l (XJ+l• ... , Xq-1)· (A.6) 

It follows from the foregoing that in order to 
regularize the function B~ ( T) it is necessary to 
subtract from the function Fq_1 its value at infin­
ity in each of its arguments, i.e., we substitute in­
stead of F q-1 the function 

q-l 

n ( 1 - Q;) F q-1 (xi, ... 'Xq-l), (A. 7) 
l=l ,.. 

'rhere the operator Qj is defined by the equation 
QjFq_1 ( .•• ,xj•···> = Fq_1 ( ••• ,oo, ••• ). Such a 
substitution of (A. 7) for the function F q-1 is real­
ized precisely by dividing one series by the other 
and grouping the terms about equal powers of ~. 
The same applies also to the regularization of the 
integral with respect to ~. (A.5). Finally, the scat­
tering matrix element with the phase shift elimi­
nated is written in the form 
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g2 oo~ oo oo\ c~o The integral in the exponential function is (when 
Mt.._;(wr)= 21.(J)f dr:e-i"';o ~(-ioN!::.m)q dx1 ... dxq t t t) 

..... '>1 > '-'2 > ... > '>. 
-00 Q=l 0 0 

00 
q A 

X IT (1- Qi) Fq (x1, ... , Xq} ~ d'£ [e.('£) e (£- r:) 
i=l -co 

X rre(£-~ Xj) e('£-r:- ± Xj)-] J (A.8) 
1=1 }=1 J=l 

From (A.8) we obtain (10) directly if we recog­
nize that the operator ( 1 - Qj) can be represented 
in the form 

00 

A \ a 
1 - Q1 = - ~ dy1 ay _. 

x· I 
I 

(A.9) 

The phase shift for any other matrix element is 
eliminated analogously. 

APPENDIX B 

Acc9rding to formula (6), the eigenvalue of the 
one-fermion state is defined as 

Ew= lim <N I HSa(O, -oo)l N) = m0 + oN!::.mo + oEN, 
. ct-+o (NIS"(O,-oc)IN> 

(B.1) 

. • 0 q 

= - ~~~ ~~ ds1ds2ecx(s,+s,) IT e (s1- ~,) !::. (s1 -s2) 
-00 J=1 

X e (s2- '£ ·) = - gz ); __!_ (__!_ + __!_) _ g2 ~ -. 1 
I 4 £,.J (1)2 w. · (J) .LJ .(1)3 

k k 

q q l-1 
X [q+ L; (-1) 1 i"'~l +2 LJ L; (-l)l+me-i"'l~m-~t>J. 

1=1 1=2 m=l 
(B.4) 

The first term in (B.4) is the same for all the 
terms of the series, both in the numerator and in 
the denominator, and therefore cancels out. Sub­
tracting in (B.2) the integral with respect to s, 
we obtain 

a. g2 a 
M1 = - 2 L;w-2M 2 

k 

co o a,_1 , 

- ~1 (- ioN!::.m0)q -~ d'£1 .• ·1 d£,exp (a ~1 Si) 

. ( a a ) · 
Xt. as 1 +···+~ exp{lq(s1, .... ~q)}. (B.5) 

oE N = lim <N I I< (1jh:l1jJ)cx ~ (0) sex (0, - oo) I N). 

<>->0 (N IS (0,- oc) IN) 
(B.1') Let us consider now the q-th term of the series 

The matrix element in the numerator is 

" co 0 "q-1 
= - L; (- ioN!'::.m0)q ~ d£1 • . . ~ d£, 

Q=l -co -oo 

q 0 

X exp (a ~ £1) ig2 ~ dsea'i!::. (s) 
1=1 -co 

X ri e (s- Gj) exp {- i~2 ~\ ds1ds2ea (s, t>,) 

J=l -co 

(B.2) 

(B.5) 

Further, substituting (B.6) in (B.5) we obtain for 
EN, according to (A.1), the expression 

(B.7) 

The matrix element in the denominator of (B.1') 
is obtained analogously 

Performing in (B. 7) a term by term division of one 
series into another, we eliminate thereby the phase­
shift factor in each power of illn. This makes it 
possible to make the transition to the limit in a 

00 

q=O 

0 ~q-1 q 

rq= ~ d'£1 ... ~ d'£qexp (a~ Si) 
-oo -co 1=1 

0 

X exp {- i~2 ~~ ds1ds2ecx(s,+s,) 

-co 

q 

X g1 e (s1- £,)!::. (s1- s2) e (s2 - £1) }· 

in each power with respect to ~m (see Appendix A). 
As a result we obtain 

co 

EN= mo-+g2 L; ~2 + L; (- ioN!::.m)q 
k q=1 

co co q-1 
X~ dx1 ... ~ dXq-tiT (l- Qi) Fq-dx1 •... ,Xq-1), 

o o 1=1 (B.8) 

where Fq-i is given by (A.5). We obtain (6) directly 
(B.3) from (B.8), if we take (A.9) into account. 
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APPENDIX C 

Let us consider formula (13). We used the re­
lations 

q q q 

II (1-Qi> = 2] <-1)12] 
i=1 l=O 

sz-1-1 

· · · 2] Qs,· · · Qsi" · · Qsl' (C.1) 
Sl=1 

00 co 
(' d \ dx e-• (x,+ ··· +xq) J x1 •.. .\ q 

0 0 

= ( + Y ~~~-1/~1_1-s1 -1 · · .I;,-s,+1-1 · · .I;,-s,-11~-s,, 
(C.2) 

00 00 

I• - \' d \' d -• (x,+ ... +xs) F ( ) 
s - J X1 .•. J Xse s X1, . • ., Xs · (C.3) 

0 0 

Substituting these relations in (13), we obtain after 
interchanging the order of summation in the sums 
with respect to q, Z, and Si, and interchanging the 
summation indices (the derivations are simple but 
somewhat cumbersome and will therefore not be 
given here) 

co 00 

1-, - (' d (' d -• (x,+ ... +xq) 
q- J x1 .... \ Xqe 

0 0 

q ' 
X II (1- Qj) Fq(X1, .. . , Xq). (C.4) 

i=l 

Let us carry out in (C.4) formally the summation 

co -1 -1 

6m• = [ 11
8m+ {2J (Mn)q 1~} J . 

q=O 
(C.5) 

Since ~ s (If )q, we get 

6m• <:;: [~mh + 1- ~m/~]-1 = [1- ~m/~]-1 • (C.6) 

The summation in (C.4) will be correct if E satis­
fies the conditions 

~mle < 1 - ~mn, (C.7) 

of which the second is the stronger. 

APPENDIX D 

Let us consider the q-th term of the series (1') 
for the Green's function 

t ~q-1 

J q (t) = (-i~m)q ~ d£1 . . . ~ dsq exp { - g2 L} ~a 
q q l-1 [2J (- 1)1 (e-iw(H1> -e-i"'cl)+22] 2] (-1/+me-i"'(~m-';1) ]}. 

0 0 k 1=1 1=2 m=1 

Since we are interested in the behavior of the 
Green's function for small times ( 11-t « 1), the 
functions in the exponential function can be re­
placed by their asymptotic expansions for small 
arguments 

g2 2] w-3e-t"'< =- G2 ln (itt£)+ G2 (In 2- C -1) + O(tt£), 
k 

(D.2) 

where C is Euler's constant and G2 = g2/21r2• 

Making further a change of variables of inte­
gration in (D.l), ~j = 11-txj and substituting the 
asymptotic expansion (D.2) therein, we obtain 

Jq (t) = (- "';r (ittl)q-2G'[q!zl exp {2G2 (ln2-C-1) [q/2]} lq, 

q 1-1 

II II ( )(-l)l+m2G2 

X Xm-XI , 

1=2m=l 

[ ~ J = { 
q/2 if q is even 

(q-1)/2, if q is odd 
(D.3) 

Let us consider first the numbers Iq for even 
values q = 2n: 

(D.l) 

~ Xze-1 n [(1-X ) X ]G' 
lzn = j dx1 • . • .) dX2n II x2, (i ~ x2:~~~ 

0 0 f=1 

n 1-1 

X II ( )-2G' II [ (xzm- x21) (x2m-1- X21-1) JzG• 
X21-1- X21 

1=1 m=1 (x2m- X21-1) (xzm-1- X21) 

(D.4) 

We make the following change of variables in 
the integrals: 

We then obtain 

x1 =II 2-i. 
i=l 

(D.5) 

(D.6) 
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It is easy to see that the integrals converge on 
the upper limit provided 

(D.7) 

To obtain an estimated upper limit for the num­
ber Im, we use the inequality 

(l- x)/(l- x~) < 1, 0 < x < 1, 0 < ~ < 1. (D.8) 

An estimate yields 

1\ d 2n (1-02)-1 2ll 1~ z (211+1-1) (1-02)-1 
I ..-- z1z1 fi d 1 2n ~ G2 Zt __::_ __ --:;:20""'--. 

~ (1-z1) 1= 20 (1-z1 ) 

(D.9) 

The calculation of the integrals leads to the 
result 

((1- 0 2) r (1- 202)] 211 ( (2n + 1) (1 0 2) 1) 
12n < r ((1- 20")/(1- 02)) r ' 1--;;2 - ' 

[ r (1- O") 12 
X r ((2n+1) (1- 0 2)L . (D.10) 

As n tends to infinity, the inequality assumes 
the form [ ( 2n + 1 )( 1 - 2 G2 ) » 1 ] 

1r (1- 202)] 211 (1- o2r 1r (1- 0 2i]2 
12n< r ((2n + 1) (1- 202)); r ((1 20")/(1 02)) 

(D.ll) 

The presence of the factor r ( ( 2n + 1) ( 1 - 2G2 )) 

in the denominator of the right half of the inequality 
ensures the absolute convergence of the series 
(D.1) for small t, i.e., f-l.t « 1, for arbitrary D.m, 

subject to the condition g2/1r2 < 1 on the bare coup­
ling constant. An estimate of the odd numbers 
Im+1 is obtained analogously and yields the same 
results. 
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