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A theory is developed for the thermoelectric coefficients in a quantized magnetic field in 
the case of mutual entrainment of phonons and electrons. A set of kinetic equations for the 
phonon distribution functions, and the electron density (nondiagonal) matrix f is obtained 
with the aid of the diagram technique developed in reference 5. It is shown that solution of 
the integral equations for g and the diagonal part of f should precede the expansion in pow­
ers of ( WT) - 1 « 1 ( w is the Larmor frequency and T the electron relaxation time). An 
arbitrary electron and phonon spectrum is assumed. 

THE important role of the deviation of the phonon 1. SYSTEM OF KINETIC EQUATIONS FOR THE 
distribution function from equilibrium in thermo- ELECTRONS AND PHONONS IN A QUANTIZ-
electric phenomena, i.e., the effect of entrainment ING MAGNETIC FIELD 
of the electrons by phonons (or vice-versa), was 
reported some time ago. 1•2 The starting point in 
these papers was the Boltzmann transport equa­
tion for the distribution functions of the phonons 
and electrons, with allowance for deviations of 
both systems from equilibrium. However, in the 
case when the energy is quantized and the distance 
between discrete levels is commensurate with or 
greater than T = {3- 1 ( T is the temperature in en­
ergy units), the problem is radically changed. 
Thus, for example, in a magnetic field the elec­
tron velocity component transverse to the field 
has no diagonal matrix elements, so that to calcu­
late the corresponding current components it is 
necessary to know the nondiagonal elements of the 
density matrix, and the problem cannot even be 
formulated in terms of the customary classical 
theory. 

The purpose of the present investigation was to 
obtain suitable quantum equations for the entrain­
ment theory. Although we shall be interested in 
what follows in the thermoelectric tensor, we shall 
determine the Peltier tensor, which is related to 
the former by simple symmetry relations3 (the 
Herring II -approach2 ) • In investigations of ther­
moelectric phenomena we deal with entrainment 
of phonons by electrons acted upon by an electric 
field. In this case the total heat flow consists of 
two parts, the ordinary part produced by the elec­
trons, and a part due to the entrainment of the 
phonons by the electrons and produced by the 
phonons. 

If a crystal with arbitrary electron spectrum 
E (:P) is placed in a magnetic field H = ( 0, 0, H), 
we can choose the energy operator in the form € 
= €(Px, (eH/c)(x0 -x), Pz), where x0 = (c/eH)Py. 
The corresponding wave functions are of the form 

'ljl = (LyLz)-'1• exp [(i1i)-1 (Pyy + P.z)l <j)nPz (x- Xo) (1.1) 

Ly,z are the crystal dimensions in the y, z direc­
tion. 

The functions cp satisfy the equation 

e(Px, -(eH/c) X, P,) <j)nP2 (x) =en (Pz) <j)nP2 (x), 

where En( Pz} are the eigenvalues of the energy € • 
If the electrons do not interact with one another, 

the complete Hamiltonian of the electron-phonon 
system is of the form 

ito = ~ a: aaBa + LJ b; bqfiWq, 
(l q 

V = ~ ~ ~Ved (q) Jaa' (q) a: aa' exp 1- iqr/1il 
q eta.' j 

q cx.a.' 

Here a is the aggregate of the quantum numbers 
of the electron (nPyPz), Wq is the cyclic fre­
quency of a phonon with momentum q; Ved(q) is 
the Fourier component of the potential of the inter­
action between the electrons and the defects; rj is 
the coordinate of the j-th defect (the eventual av­
eraging is over rj); Jaa,(q) is the matrix ele­
ment of the operator exp [iq · r/ti ]; cq character­
izes the interaction between the electrons and the 
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phonons, and is proportional to q112 for small q; 
Vff and Vfd are the operators of the phonon-phonon 
and phonon-defect interactions. 

In the presence of a constant and homogeneous 
electric field E, the deviation of the density ma­
trix {>1 of the system from the equilibrium matrix 
P is4,5 

0 0 ~ 

p1 = po ~ d-ee" ~ dlv ~ d3reJ (r, -r - i!ilv) E 
-oo 0 

0 ,s 

=Po ~ d-re'' ~ dlvev (-r- ililv) E, s-- + 0, 
-00 0 

where v and 3 ( r) are the electron -velocity and 
the particle-flux-density operators. 

We introduce, following Konstantinov and Perel' ,4 

the single-particle matrices 

0 ~ 

fr;·!l = Sp P1a; aw = eE ~(v)cxcx' ~ d-re'~ ~dlv 
aa.' -oo 0 

X Sp {roTc {exp [ ( i!i)-1 ~ V (z) dz J (a; aw)-ifiA (a! acx·)~}}. 
c 

0 ll 
A A+ A ~ i I 

gq•q = Sp PI bq bq• = eE L.J(V)cxa:' J d-ren J dlv 
a.cx' -co o; 

x Sp {roTc {exp [(iii) -l ~ v (z) dz J (b~ bq·)-inA (a: aa:·)~}}· 
c (1.2) 

The integration contour C is shown in Fig. 1 
(from T via T -iliA. to -iliA., again to T -iliA., and 
finally to T- itij3). The symbol Tc denotes the or­
dering of the Heisenberg operators along the con­
tour C. 

r 
---------1--' 

l 
l· 
I 
I 
I 

r-ifi).. '-----o-J iM. 

r-ill/] 

I 
I 
I 
I 
I 

FIG. 1. The contour of integration C. 

Konstantinov and Perel'4 have obtained an equa­
tion which the matrix f satisfies when the phonons 
are not entrained by electrons ( g = 0 ) . Using their 
method, we readily obtain a system of transport 
equations for the matrices f and g. The general 
form of this system is most conveniently formu­
lated by using the diagram technique which they 
introduced, and which we must generalize some­
what because the eigenfunctions of the operator 
:fC0 are not plane waves. 

We shall represent the vertex corresponding 
to the electron-phonon interaction and containing 

"'+"' A. ( ... + ... b ... +) b f . aaaa'bq or aaaa' q y means o a pomt, on 
the contour C, at which three lines meet: the in­
coming (a' ) and the outgoing ( a) electron lines 
(solid) and one incoming (bq) or outgoing (bq) 
phonon line (dotted). The rules for calculating 
the diagrams are as follows: 

1) To each "regular" electron line (i.e., mov­
ing from the earlier to the later point along the 
contour ) there corresponds a factor ( 1 - na), 
while to each "irregular" line (moving in the op­
posite direction) corresponds a factor na. To 
each "regular" phonon line corresponds a factor 
1 + Nq, and to each "irregular" one- a factor Nq 
(na and Nq are the Fermi and Planck functions, 
respectively). 

2) To each vertex corresponds a factor 
cqJaa'(q), if the incoming lines are a' and q 
and the outgoing line is a, and a factor cqJ~a' 
if the outgoing line is q. In interactions with de­
fects, incoming "defect" lines with no directions 
appear at the points. The corresponding factor is 

Ved(q)Jaa•(q) exp [- iqr/lil. 

3) To each point corresponds a factor (iti)-1 

on the upper horizontal part of the contour C, a 
factor (- ili) - 1 on the lower part, and a factor - 1 
on the vertical part. 

4) Each diagram is multiplied by (- 1 )M, where 
M is the number of intersections of the electron 
lines with each other. The electron lines approach 
the points only in a manner such that their direc­
tion coincides with the direction of motion along 
the contour near this point (see, for example, Figs. 
8b, e, h, below). 

5) To each interval between the points nearest 
in time on a horizontal part (upper or lower) cor­
responds a factor obtained in the following manner. 
The interval is cut by a vertical line and the factor 
(s + iWMN)-1 is set up, where WMN = ti-1(EM- EN), 
and EM (or EN) is the sum of the energies of the 
lines that cross the cutting line from left to right 
(or from right to left). If some cutting line crosses 
only two electron (or two phonon) lines, then the 
corresponding factor has a value s-1 when a= a' 
(or q = q') and diverges as s- 0. This is the 
basis of the separation of the irreducible parts of 
the diagrams (see below). 

6) A Laplace transform is taken in the variable 
j3 = T-1 ( T is the temperature in energy units ) : 

00 

faa.' (cr) = ~ d~e-ilafcxa:' (~) 
0 

and analogously for gqq'· The quantity j3, which 
enters in p0, is not regarded as an integration 
variable. Then to each interval between two near-
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est points on the vertical part corresponds a factor 
(a+ .tiwMN)-1, where EM (or EN) is the energy 
of the lines that cross the horizontal cutting line 
from top to bottom (or from bottom to top ) . 

In setting up all the possible sections, account 
is taken also of intervals whose boundary points 
are T, T -iliA., - iliA., and T- ili,B. 

The system of transport equations for f and g 
can be presented graphically by means of this tech­
nique as follows: 

FIG. 2 

The unshaded figures with two solid (or dotted) 
lines .B.B' (or q'q) on the right represent the mat­
rices f.B' .B (or gq'q), which are equal to the sum 
of all the diagrams with all possible numbers and 
placements of the points on the horizontal and ver­
tical sections, and with two "free" electron ( ,B' ,B) 
(or phonon, q'q) lines on the right. The shaded 
figures F .B' .B (or Gq'q) on the right represent 
the sum of all the diagrams terminated by two 
electron lines .B.B' (or phonon lines q' q) and are 
irreducible in the sense that any vertical cut on 
the horizontal part of the contour crosses more 
than two lines. The shaded figures W represent 
the sum of the diagrams which are irreducible in 
this sense and which have points only on the hori­
zontal part of the contour. The quantities F .B.B' 
and Gq'q do not include the factors ( s + iw.B'.B )-1 

and ( s + iwq' q) - 1, corresponding to the cutting of 
two right lines. The W's do not include the fac­
tors corresponding to the cutting of two pairs of 
lines joined to W from the left and from the right 
(pair 5 ) , nor the factors corresponding to the pair 
on the left (pair 1 ) . 

The system shown graphically in Fig. 2 has the 
form 

fwr; = Fwr; (s + iwwr;)-1 + ~ W(wflHy'·of .... • .... (s + iww/3)-1 

y'y 

+ ~ W(h'/3)(q'q)gq•q (s + iwr;·/3)-1, 
q'q 

gq•q = Gq•q (s + iWq•q)-1+ ~ w{~'q) (f3'/3>lll'll (s + iWq•q)-1 

W/3 

+ ~ W{q'q)(r'r)gr•r (s + iWq•q)-1 ' (1.3) 
i'r 

The W' s represent the kernels of the "collision 
integrals" and have the meaning of transition prob­
abilities. Our problem reduces thus to the calcula­
tion of F, G, and W. We require an accuracy to 
V2, so that the corresponding diagrams will have 
two vertices. 

Figures 3-6 show typical diagrams for W. The 
diagrams wfe are constructed similar to wef, and 
therefore only one is shown. In the diagonal compo­

nents of W (Wr.B.B><YY>' wrJ,B)(qq) etc.) the princi­
pal values of the integrals involved cancel out and 
only the delta functions remain. As regards the 
nondiagonal elements of W, we shall see later on 
that in the approximation of interest to us (the low­
est approximation that does not vanish in V ) we 
can neglect the principal values in these elements. 

The diagrams contained in F and G, which 
have vertices only on the vertical parts of the con­
tour, do not contain irreversibilities (the param­
eter s ) and correspond to renormalization of the 
spectrum of the system as a result of the interac­
tion V. Further, in analogy with the statements 
made concerning W, we shall discard in F and G 
the principal values of the integrals and retain 
only the delta functions, since F and G represent 

r' .... ;3' r' I p' 
q'", 

f3 )' 
1'q 

f3 , , a b 
r' 8 f3' ;/-/ l .... _..,..q 

.... i ... 
r=f3 c fi )' ~ fl 

d 

FIG. 3. Diagrams for we. 
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FIG. 4. Diagrams for wf, 
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FIG. 5. Diagrams for wef, 

y'--- «t' ·?S:---~ 

r ...... ~---~~-----«{ 
FIG. 6. Diagram for wfe. 
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an inhomogeneity in the system of transport equa­
tions, and the discarded terms would yield only 
small additive corrections which are of no inter­
est to us. Since diagrams in F and G with both 
vertices on the horizontal part of the contour are 
reducible, the only remaining diagrams are those 
indicated in Figs. 7-9, in which one point is on 
the vertical and one on the horizontal part of the 
contour. Figure 7 shows the free term F in the 
absence of interaction. The sum of the diagrams 
for F and G must be multiplied by e ( E • v) a a' 
and summed over all a and a'. 

We have included in the figures only the dia­
grams necessary to understand the method. To 
all the diagrams indicated for W, F, and G we 
must add those obtained by transferring the points 
from the upper horizontal section to the lower one 
(or vice versa). With this, it is necessary to take 
into account, in accordance with the rules indicated 
above, the change in the sign, the change in the 
number of intersections, and the change in the 
"regularity" of the incoming (or outgoing) lines 
to the right of the point. The "regularity" of the 
lines to the left does not change in such a transfer. 
As a result, the diagrams in which all the lines 
arrive at a point on the horizontal part from the 

a'0_d. - , 
l~------• j3 =d. I 
------------~Efi=d 

FIG. 7. Diagram for F 
without interaction. 

FIG. 8. Diagrams for F in the V2 approximation. 
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~~ • d~'d /--q' 
'-----•q __ >( .... 

( /-----:----q 7 (:___ f ---q 

~d d~d ' ;;;- q' l' ' 
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7 e_- ---: '--q ( ----:-----1} 
FIG. 9. Diagrams for G in the V2 approximation. 

left can be disregarded. Further, it is necessary 
to sum over the two possible directions of the 
phonon lines with dummy indices. It goes without 
saying that it is necessary to sum over the dummy 
indices in all diagrams. 

Using the general form of the wave functions 
(1.1), and also the fact that v aa' is diagonal over 
P [ P = ( Py, Pz )], it is easy to conclude that F 
is diagonal over P and is independent of Py while 
G is diagonal over q. Further, it is easy to show 
that 

W(PP)(P'P") ~ 1\p,p•, 

S dP y W{:'q)(PP) ~ llq'q, 

W(b'P)(qq) ~ 1\p'p, 

W{qq)(r'r) ~ llr'r· 

In addition, all the W are independent of Py. 
It follows from the properties of W that the 

matrix elements f, diagonal over P, and the di­
agonal matrix elements g, are not "coupled" in 
the equations with matrix elements f and g which 
are not diagonal over P (or q). But then it fol­
lows from the aforementioned properties of F and 
G that f(nP)(n'P') "' opP' and gq'q "' oq'q· Since 
neither F nor W depend on Py, f is also inde-
pendent of Py, and we can introduce f(nP)(n'P') 
= fnn' ( P z ) . The foregoing properties are obvi­
ously the consequence of the spatial homogeneity 
of the problem, and take place only in the absence 
of spatial dispersion. 

Calculating W with allowance for the approxi­
mations listed above, we obtain 
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W(ll'{l)(a'a) = nli-2 2; I Cq 12 l:·wl a{l {6 (rowa +roq) 
q 

x [(l-nw) (Nq + l) + nwNql+6(rowa-roq}!(l-nr;•)Nq 

+nw (Nq+ 1)1 +6 (rolla'+roq) ((1-nll) (Nq+ 1) +nflNq] 

+ 6 (rolla'- roq) [(1 - n13) Nq + n13 (Nq + 1)]} 

- nli - 26!la ~ ~ I Cq 12 J:.J ll'Y { 6 (roilY - roq) 
q '( 

x [(1 - ny) (Nq + 1) + n"N"l 

+ 6 (ro13" + roq) [(1 - ny) Nq + ny (Nq + 1)]} 

- nli-2 6wa' ~~I Cq I~ J ayl;y {6 (row ... - Wq) 
q y 

x [(1 - ny) (Nq + 1) + nyNq) 

+ 6 (olll'y + roq) !(1- ny) Nq + ny (Nq + 1)]}, (1.4a) 

W(h)(qql = nli-2 1 Cq 12 ~ {(ny- n13)!6 (roy/l +roq) Jfl'yJ;" 

+ 6 (royi3-roq} /"llJ~w1 + (ny- nw) [6 (roy!l' + roq) J13•yJ;" 

+ 6 (royf!/- roq) J"ill~w)}. (1.4b) 

wr~q)(ll'lll = nli-2 1 Cq 12 ~ {l{lyJ;.'\' [(1 + Nq) (1 - ny) 

+ Nqny) 6 (roll'"- roq} 

-lywl~~ [(1- ny) Nq + n., (Nq + 1)1 6 (row"+ roq) 

+ J ~YJ;.Y [(1 + Nq) (1 - n.,) + Nqny] 6 (roilY- roq) 

- l ... r,·l~fl 1(1- ny) Nq + nT (Nq + I) I 6 (cor, ... + roq}}. 

(1.4c) 

We do not write out wf, since this operator is ob­
tained by linearizing the usual integrals for colli­
sions between phonons and equilibrium electrons, 
for collisions between phonons, or collisions with 
defects. As regards the operator of collisions be­
tween the electrons and the defects, this operator 
is obtained in the Born approximation from the 
one written out above by discarding the factors 
Nq or Nq + 1 and the addend wq from the argu­
ments of the delta function, and replacing I cq 12 

by I Ved(q) 1 2 Nd ( Nd is the number of defects). 
In the longitudinal case, when E = Ez and 

(E•v)aa'....., 6aa' so that Ff3'f3 which is diagonal 
in the zeroth approximation (sufficient for this 
case) of the interaction, we obtain, after taking 
the inverse Laplace transform in the variable u, 
a system of transport equations of the ordinary 
form for diagonal matrices (occupation numbers ) 
f and g.* 

In the transverse case (for example E = Ex), 
if the motion of the electron along the x axis is 
finite (i.e., we do not consider open trajectories6 ), 

then (E·v>aa' = 0. 

*Subject to the condition cu't » 1 (in the notation of Sec. 2). 

It is convenient to present F in the form 

Fwll = Fh- ~ W(r.'r.H-r'YlF~'y (iroy•y)-1 + ~Fw13 ; (1.5) 
y'y 

Fh = eEv&~~ (lirowll)-1 (nil- nil·), (1.6a) 

~F wr. = -neE (WT)-1 ~ I Cq 12 N q {v~~ro:;;~ 
y'yq 

x[J~·YJil'Y6 (roy 13 +roq) ny (1-nil) 

+ J~r.·l yy'6 (roy~- roq) nr. ( 1 - ny) 1 

+ V~~~roij.~ fJ;y.J yy•6 (roy•r.•+roq)ny• (1- nil•) 

+ J~•yl y'il6 (roy'r.'- roq) nw (1- ny•) 1 

- v~~~ro=;;~ [J;yl r.'y'6 (roy'il +roq)ny·{1-nr.) 

+ l~·wl Yil6 (roy•r. - roq) nil (1 - ny·) 

+ 1;yl r.·y'6 {royil' + roq) n" (1 - n13•) 

+ J~'il'J "r.6 (royil' - roq) nr.• (1 - ny)l}. 

Noting that 

(y' =I=~)· 

= 2:Jn' (- q) Xy•~- Xil(lfyr.{- q) 
y' 

= (e-iqr/lix)Yil- xr. 13l;y (q), 

(1.6b) 

and carrying out analogous transformations in the 
remaining terms of (1.6), we obtain, recognizing 
that the operators exp ( iq • r) and x commute, and 
also that Jyy' ( - q) = J.Y,, ( q) and w ( q) = w ( - q), 

~F il'il = neE (li2T)-1 ~ I Cq 12 N ql~"J r.•y 
yq 

x {Xr.Y [6 (roy13 + roq) ny (1 - nr.) 

+ 6 (roy13 - roq) nil (1- ny}] 

+ Xwy [6 (royr.• + roq) ny (1 - nr.·) 

+ 6 (royr.•- roq) nw (l - ny)]}. 

Here Xaf3 = Xaa- Xf3f3• 
Analogously we obtain 

Gq =- ~ W{~qHil'lllFh (irowll)-1 

{l{l' 

+ lcql2 2neE(Ii2T}-1 ~Nqnil (1- nw) 
llll' 

x 6 (rowl3- roq) I lwr>l2 Xwil· 

(1. 7) 

(1.8) 

We note that the matrices f and g are Hermi­
tian, because 

Wef w•t• (/l'{l)(qq) = ({l{l')(qq), 
f f• W(qq)(rr) = W(qq)(rr)• 

Gq =a;. 
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2. CASE OF STRONG ( WT » 1) TRANSVERSE 
MAGNETIC FIELD. DERIVATION OF A SYS­
TEM OF EQUATIONS FOR THE DIAGONAL 
PARTS OF THE MATRICES f AND g 

In the case of a strong magnetic field transverse 
to the electric field, we can expand the non-diagonal 
part of the matrix f in powers of ( wr) - 1 « 1, 
where w is the Larmor frequency of the electrons 
and r is their relaxation time. This corresponds 
to assuming W and ~F in (1.5) to be small. In 
this case it is sufficient to calculate the values of 
W "' T-1 in the lower approximation in V (in the 
case of scattering by impurities - in the lower ap­
proximation in the concentration). 

Diagrams of higher order contain parameters 
ofthetype :fi(rT)-1 or :fi(rt)-1 (t isthechem­
ical potential of the electrons ) , which are small 
in most cases, and can be disregarded here. As 
regards F (or G), the addition of points on the 
horizontal parts of the corresponding diagrams 
obviously yields corrections of the same type as 
due to the addition of points in the diagrams of W. 
The addition of points on the vertical parts corre­
sponds, on the other hand, to thermodynamic per­
turbation theory (i.e., to the expansion of the op­
erator Po= z-1 exp [- (3 (Jc0 + V- tN)] in powers 
of V), and therefore cannot lead to either appear­
ance or disappearance of currents, but can only 
give rise to corrections to these quantities, which 
are of no interest to us. Therefore, at least for 
the calculation of F (or G), it is sufficient to 
consider only diagrams with a single point on the 
vertical part, and in our case also with a single 
point on the horizontal portion, as we have done 
in Sec. 1. 

We shall now show that before we expand in 
powers of W and ~F [i.e., in ( wr)-1], we must 
solve the system of integral equations for the ma­
trix g and the diagonal part of the matrix f. We 
introduce the symbol fd and fll for the diagonal 
and non -diagonal parts of f, and analogously for 
other matrices. Then the system (1.3) can be 
represented in the form 

· t(n) pO (n) ("" we pO (n)( • )-l)(n) + Af(n) 
trow~ 13'13 = 13'13 - ..:::.J Will (Y'Yl y'y troy•y L.1 13'13 

y'y 

( "\;"! e (nj)(n) (.._, e fd )(n) + ..:::.J WcwflHy'yJfh + LJ Wcwm en> n 
y'y y 

'"\;"! ef )(n) 
+ \..:::.J Wu>'fl><qq> gq , 

q 
(2 .1a) 

"\;"!we pO(n)(• )-1 Af "\;"!we f(n) - ..:::.J ({3{3) (y'y) y'y lffiy•y + L.1 {313 + ..:::.J ({3{3) (y'y) y'y 
y'y y'y 

(2.1b) 
y q 

+ h w{:q> clll3l fgll + h W{qql err> gr = 0. (2.1c) 
(3 . 

In the zeroth approximation f~l{] = F~,{J ( iw(3' (3) - 1, 

and fod, and g0 remain indeterminate. To deter­
mine these we must substitute in (2.1b) and (2.1c) 
the values of fo(n). We then obtain a system of in­
tegral equations for f0d and g0, which is more 
convenient to write down by introducing the quan­
tities cpa and Yq. related to fd and g by the 
equations 

f~a. =- (ana.(aea.) CfJa., gq =- [aNq(a (nwq)] Yq· (2.2) 

cp~ and y~ satisfy the system of equations 

2n (n2T)-1 h 1 Cq'l 2 \ llla.\ 2 [6 (wall+ roq) na. (1- nil) 
aq 

+6 (wall- roq) nil (1 -n")l 

x [eEX~"-(cpg -cp~) +y~] Nq+2n (n2T)-1 

X~ I Ved (q)i2 llila\2 6 (ro"il) n13 (1-nll) 
aq 

X [eEXil" -(cpg-cp~)l Nd = 0; 

2n (n2T)-1 ~I cq \ 2 n" (1-nll) Nq6 (roil" -roq) I !13" \ 2 

x[eEXa(3-(cp~-cpg)-r~l+ w,,(yq) + Wrd(yq) = 0. 
(2.3) 

Here Wff and Wfd are the operators of the phonon­
phonon and phonon-defect collisions, respectively. 

Substituting the solution of these equations into 
(2 .la) in the first approximation, we obtain for 
f1(n) 

f~·~") = n ( iwr;·(31i2T)-l h l~a.h•a. { I Cq I Wq { [6 (ro"ll + Wq)na 
a.q 

X (I- nil) +6 (rocxll- wq) n13 (1-n") I [eEXila.- (cpg -!p~) 

+ygl+ [6 (roa.~+wq) na. (I-nw) 

+ 6 (rocxv- wq) nro• (I- na.)l feEXwa.- (cp3· -cp~) 

+ yg]} + \Ved(q) \ 2 Nd {6 (w.il) nil(I-n13) 

X fe£X13a:-(cp8-cp~)l +6(wcxil•)nw(1-nv) 

X [eEXr;·.- (cp8·-cp~)]}}. (2.4) 

The resultant values f1(n) are again inserted in 
(2.1b) and (2.1c), after which we obtain fd and g 
in the next approximation. This process of suc­
cessive approximation corresponds to expansion 
in powers of the parameter (wr)-1• 

It is easy to see that the equations for fd and 
g in the different approximations differ only in the 
form of the inhomogeneity. We note that the non-
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diagonal elements of W (i.e., w(,a',B)(y'y)• in 
which the equations ,8' = ,B and y' = y are not sat­
isfied simultaneously, and analogously for wef 
and wfe) enter into the integral equations only 
as inhomogeneities, and we can therefore discard 
in these quantities the principal values of the in­
tegrals, as in the case of F (or G). The same 
pertains also to the terms with W in (2.4). 

The integral equations (2.3) have the form of 
ordinary transport equations, and the singularities 
of the problem are due only to the inhomogeneity. 
Since the wave functions (1.1) depend on the argu­
ment ( c/ eH) Py. where Py = Py - ( eH/ c) x, the 
matrix elements are Xaa = (c/eH)[(Py)aa 
- (py )aa ]. The quantity (py >aa obviously has 
the meaning of the average value of the momentum 
Py on the quasi-classical orbit E. (p) = const, pz 
= const. 

If the crystal has mirror symmetry with re­
spect to the xz plane, then the first equation in 
(2.3) is satisfied by <Pa = ue(Py>aa• where Ue 
= - cE/H is the electron drift (Hall) velocity, 
for in this case ( Py ),B,B- ( Py >a a = qy, y ( qy) 
= -y(-qy)· Then in the second equation in (2.3) 
the term corresponding to the phonon -electron in­
teraction has the form [ ueqy- y ( q)] Tf"J, corre­
sponding precisely to the phenomenological theory 
if y ( q) = Ufqy, where Uf has the meaning of the 
phonon drift velocity. (Here Tfe is the ordinary 
relaxation time of phonons on equilibrium elec­
trons). 

In the case of an isotropic spectrum (Py >a a 
= 0 and therefore cpa = 0. In the particular case 
of an isotropic quadratic spectrum, neglecting the 
entrainment of electrons by the phonons, we ob­
tain the results of Adams and Holstein 1 for f~,, 
and our matrix nac5aa' + :f'Ja, is identical with 
the matrix p ( 0) of this paper, written in the Jc0 

representation. 
In the absence of defects (and also in the ab­

sence of Umklapp processes) the system (2.3) is 
satisfied by the values cpa = ue ( Py ) a a and Y ( q) 
= ueqy, corresponding to an over-all drift of the 
electron-phonon system with a velocity ue [the 
term wff ( 'Yq) also vanishes in this case ] . We 
now get in (2.4) f1(n) = 0, which is understandable, 
for in the absence of scattering by the defects the 
total momentum of the system is conserved, cor­
responding formally to T = oo • 

We also note the following. Let the phonons be 
in equilibrium. Then the equation for cpa has the 
form Lx = 0, where Xa = eExaa- <Pa· Obviously 
the solution X a = 0 (from which follows fNl/l. = 0) 
corresponds merely to a Boltzmann charge distri­
bution in a potential electric field, not accompanied 

by an irreversible current. The nontrivial solution 
for x is determined, in view of the homogeneity of 
the equation, accurate to a constant factor, which 
can be defined in such a manner as to make cpa 
= eExaa- Xa independent of Py (which is possi­
ble, as was already noted in Sec. 1 ). With this, 
since faa' is diagonal over Pz and is independent 
of Py, and the wave functions have the form (1.1), 
the charge density 

cw: 

is independent of x. 
Knowing the functions cp and y in the zeroth 

approximation, we can determine f1(n) and conse­
quently, the component of the current density along 
the electric field 

]"(X) _ ~ ~ V(X)fl (n) - v LJ ~w w~ 
w~ 

( V is the volume of the sample and the factor 2 
corresponds to the two spin orientations ) . After 
transformations analogous to those used to trans­
form (1. 6) into (1. 7), we obtain 

ailq 

.x X fa. (eEXfla- (<pg- <p~) + r0 (q)] 

+I Ved (q) 12 Ndn(3 (1- n13) {J (ffia(3) 

X Xll« (eEX13"'- (<pg- <p~)]}. (2.5) 

The formula obtained by Adams and Holstein 1 is 
a particular case of this formula. 
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