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Expressions are obtained for the probabilities of M3 transitions and for second-forbidden 
beta transitions of pure Gamow-Teller type. The specific examination of the M3 transi
tions which are known in deformed nuclei indicates that the use of the corrected Nilsson 
representation is not necessary in these cases. A study of low-probability M3 transitions 
and second-forbidden beta transitions shows however that sometimes, when certain definite 
selection rules are satisfied, the use of the corrected Nilsson representation increases the 
transition probability by approximately a factor of two. 

1. INTRODUCTION 

EARLIER1 we have calculated nuclear quadrupole 
moments on the assumption that they are caused 
by the Z protons moving independently in the de
formed nuclear field which carries out a slow ro
tation which does not affect the individual proton 
motions. Such a model, which is analogous to that 
used by Inglis for calculating moments of inertia, 
gives the following quadrupole moment operator:* 

z 
~_,;;(£2) = e ~ r;2Y2,M('I'l';,tp;) = Y5f!67teQM . (1) 

P=i 

Using the eigenfunctions of the Nilsson single
particle Hamiltonian, we showed that the use of the 
corrected representation, which takes account of 
the interaction of states with different quantum 
numbers N, is necessary for nuclei in the range 
150 <A< 188. In a succeeding paper2 we came to 
the conclusion that it is not necessary to use the 
corrected representation for computing the proba
bility of E2 gamma transitions, i.e, for transitions 
which are accompanied by a change in the internal 
structure of the nucleus. The reason for this is 
the different way in which the operators r' 2Y2 0 

(J', cp') and r' 2T2,v(J', cp') (with v ;>! O) tra'ns
form when we go over to dimensionless coordinates. 

The presence of a term containing only p2 in the 
expression for the operator when v = 0 has the con
sequence that in the expression for the nuclear 
quadrupole moment, the correction term (which 
is proportional to a parameter E, related to the 
deformation parameter o ) has the same order of 

*We use x", y", z" for the space-fixed coordinate system, 
and x', y', z' for the coordinate system fixed on the nucleus. 

magnitude as the main term, and consequently it 
becomes necessary to use the corrected represen
tation. 

Let us set Q0 = <QM=o > and let us denote by 
Q0( E) and Q0( o) the theoretical values calculated 
for the operator (1) using, respectively, the im
proved and the original Nilsson representations, 
and let us denote by Qoh ( E ) and Q0h ( o ) the same 
values obtained by using the operator in the hydro
dynamic approximation, 

~~ (£2) = e LJ r~2Y2 , M ('l'l'~, cp~) + 4! ZeR~a;,M (2) 
p 

(where R0 is the nuclear radius ) . In addition, we 
denote by Q0N the values calculated using Nilsson's 
formula: 3 

QoN=+ZR~e(! -+- ~ e + .. . ) , 
which is derived from the Thomas-Fermi model 
on the assumption that <r'2> = %R~ for all the 
protons. The results obtained by us can then be 
represented by the table below (where the values 
of Q0 are given in units of 10-24 cm2 ). The experi
mental values of intrinsic quadrupole moments are 
taken from the work of Alder, A. Bohr et al.4 The 
corresponding errors of the measurements vary 
between 10 and 20%. 

We note that the values of Q0( E) are in good 
agreement with the experimental data, except for 
Lu175 and Hf177, for which the discrepancy is some
what greater. As expected, in both representations 
the hydrodynamic values are larger than the experi
mental values. 

From a comparison of the values of Q0( E) and 
Q0( o ), we see that the use of the corrected repre-
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Nucleus Eu'" I Gd"' I Gd'" : Tb"' I Ho"' I Lu'" I Hf"' I Hf"' 

s, 0.33 I 0.31 0.31 1 o.34 I o.3o 0.26 0.25 0.24 
One xp• 10""" cm2 7,7 8.0 7.7 I 6.9 

I 

7.8 8.2 7.5 7.0 i· 
Qo (e) 7.3 I 7.5 i.5 i 7.6 7.1 6.6 6.5 6.4 

QON 7.9 I 7.6 7.7 
Qo (o) 3.7 3.9 3.9 

Qoh(e) 12 11.9 

I 

12 
Qoh(o) 10.2 10.1 10.2 

sentation is necessary for computing nuclear quad
rupole moments using the operator (1) ( Q0 ( E ) 
!'::! 2Q0( 6 )). In the case where one applies operator 
(2), the difference which appears when one uses the 
two representations is much smaller, because the 
collective term does not change when we go over 
from one representation to the other. 

In the present paper we consider other nuclear 
phenomena in whose mathematical description the 
operator r'2Y2,0( J.', cp') appears, and where the 
use of the corrected representation may be neces
sary. Phenomena of this type are the M3 gamma 
ray transitions and second-forbidden beta transi
tions. 

2. M3 TRANSITIONS 

The reduced probability for an M3 transition 
is given by the expression 

B (M3; J1 ~ J 1) 

= ~ I(Q,;J,K,Mti~M(M3)JQ,; J,!(,.M,)/ 2 • (3) 
M, Mt 

In the space-fixed coordinate system x", y 11 , z", 
we write the transition operator in the form 

In the coordinate system fixed in the nucleus 
(x', y', z' ), we consider the expression 

I (V r'3Y3 ,v) = V7/5 [l,r'2 V!:i- V 2 Y2 ,v 

+ ~ V(3- v) (2- v) l_r' 2Y2,v+J 

- T V(3 + v) (2 + v) V'2Y 2,v-1) 

(4) 

(where Z± = Zx ± iZy) and an analogous expression 
for the operator s (V'r' 3Y3,v>· Transforming to 
the new variables 

£ = x' V Mwx/1l,, TJ = y' VMwy/1l,, 

~ = z' V Mwz(li, (5) 
where 

Wx = Wy=W0 (e)(1 +-}e), Wz = W0 (e) (1--! e), 

w0 (e):::::::: wg(l + ~ e2), 

I 8.8 8.0 7.5 I 7.3 7.1 
4.0 3.5 3.2 3.7 3.3 

12.5 11.4 11.5 11.2 10.5 
10.3 9.6 9.5 9.5 9.3 

and using the same nuclear wave function as pre
viously,1•2 we obtain, in place of (3), the formula* 

B (M3; J _, J,) 

k = Kt- !(,, 

(6) 

(7) 

Gk3 in Eq. (7) coincides with the term GM3( 6) 
found by Nilsson3 (his formula 36c), with the one 
difference that the quantum numbers N, l and A 
should be replaced by Nt, lt and At, determined 
in the corrected representation. t 

We found the following expression for the cor
rection term EG~3 : 

X {g. [ <1,200 JltO> v ~:;:~(A (k) 6~1 • ~,. 
x(-1)~,-'f,u(k)<l,2A,k/l1A1> 

+ B (k) 6~1 • -•;h,., •;,v (k) <t,.2Atk + 1Jl1A1) 

- C (k) 6~1 • •;.6~,. -•;.w (k) <t,.2Atk- 1/lrA;)) 

+ 1 (I + -j- 8) V5J4n: (A (k) 6h,o6~1 . ~, (- 1 )l:' -'/• 

+ B (k) {)h, -1{)~1 . -•;,{)~,. ''• 

-- C (k) 6k, I{)~,. v.6~,. -•;,) {}z, zr{}A,. Ar] 
l [ ' (21; + 1 [ + 2 gz{}r.1, ~, <L;200 ]itO) V 2/f+T A (k) 2Aru (k) 

x <It2A,.k /ltAt) + B (k) (V (If- Ar) (lr +At+ 1) v (k) 

x <l,2A,k+ 1Jl1A1 + 1) + p (k) <L,2A,.k Jl1A1>) 

~ C (k) (V(l1 + A1) (11 - Ar + I) w (k) 

X <Lt2Atk- Ijl1A1 - 1) + q (k) <1,2A,k JlrAr>)] 

+fV5/4n[(l +fe)A (ll)·2Arfl,.,o{}z1,z,6A1.A, 

*The details of the calculation will be published elsewhere.5 

tFor simplicity, in the following we omit the subscript t in 
writing the quantum numbers. 



CALCULATION OF PROBABILITIES OF M3 TRANSITIONS 565 

+ B (k) ((1 + f e) VUt- At) (l, +A, + 1) 

- C (k) ((1 +4 e) VUt +At) Ut- At+ 1) 

X 6a,l>t1,t/JA1, At-t + Jf3(2 +~e) 1)1<, 0fJe1, t/IA1, At)}]}· 

(7a) 
Here 

A (k) = V9=k2; 

B (k) = 11(3- k) (2- k), c (k) = V<3 + k) (2 + k), 

1 for k = i ( 1 for k = -1 

-1 for k =- 2 

p (k) = viis for k = 0 ' 
{ 

-1 for k = 2 

q(k) = Jfi/s for k=O , 

-viis for k = - 1 l - l'ils for k = 1 

I 0 for k = ± 3 f - 1 /a for k =- 3.1 
u (k) = - 1/ 3 for k = ± 2 V (k) = 1/ 6 for k =- 2.0, 

1/6 for k = ± 1 l 1/a for k = --1 
1/s for k = 0 0 for k =- 2,3 

1 
0 for k=-3, -2 

w(k) = - 1/a for k=-1.3 
1/s for k = 0.2 
1/s for k = 1 

3. SECOND-FORBIDDEN BETA TRANSITIONS 

The set of nuclear matrix elements which appear 
in the form factors of second-forbidden {3 spectra 
are written, following Konopinsk.i, 6 as follows:* 

S, V: ~ (~) ?h M (r), llJ = 2; 

T, A: ~(~) ?f2 ,M([arl), Ill= 2; 

T, v: ~ (~) ?!2, M (at), llJ = 2; 

T, A : ~ (~) ?f3, M (a), llJ = 3, 

where, in the space-fixed coordinate system, 

?f2. M (r) = r"2Y 2, M (l't", rp"), 

'13, M (a)= V?J.' [JI9=fW! r"2Y2, M Sz 

+ fV(3-M) (3-M-1fr"2Y2, M+1s 

- + 11(3 + M) (3 + M- 1) r"2Y2, M-1sJ, 

'ih M (ex) = + r" V6Ja [ V4=MZ Y 1, M az 

- V(2 + M) (2 + M- 1) Y1, M-la+ 

+ Jf(2-M)(2-M + 1)Yt. M+1a_], 

?f2, M (I arl) = ;li aL?J-2. M (r) 

- _i_ (J"2 - L 2 - s2) r"2Y (l't" m") 
- 21i' 2, M '" • 

The matrix element containing the operator 
?fa,M(O') has a form which is very similar to the 

*[at]= ax r. 

matrix element ~M( M3 ), which corresponds to 
M3 gamma radiation. The {3 transitions described 
by this matrix element, the so-called "unique" 
transitions, have the remarkable property that 
their spectra are easily determined. The change 
in parity for such a transition is .6.1r = (- 1 ).6-J +1. 

The corresponding values of f2T have the fol
lowing form (where we use Nilsson's3 notation; 
x is the fraction of pure Gamow-Teller interac
tion): 

f2T = Bg [xDo. r. (2Wl, Bg = 2rrNi In 2 j g2m!c\ (8) 

where the reduced probability of transition is 

Do. r. (2) = S2 (2) ~ J ~?fa. M (a) 1
2

, 

M, Mt 

~?fa. M (a) 

= (Q1; JrKrM1 j ~ sp V P [r;3Y3, M (l't;, rp;) -c± 1j Q,; J;K;M;), 
p 

_ -. j 4lt2° (3!)2 ( mec ) 2 

S (2) - Jl T! 3 1i • 

Proceeding in the same way as for M3 transi
tions, we get for Da. T. ( 2) the expression 

Do. T. (2) = S2 (2) 1~lt (Mw~ wY (J;3K,-k I J,K,)2 r~ (e). (9) 

Here y3(€) = GM3 (E) (gs = 1, g1 = 0), where the 
expression for GM3( E) is defined by (7). The op
erators ?f2,M( r) and ?f2,M( a x r) are proportional 
to the operator ~-M ( E2 ) of radiation theory. For 
this reason the square moduli of the matrix ele
ments appearing in the expressions for the quantity 
f2T are very similar to the expression for the re
duced transition probability B ( E2 ) : 

~ \~?f2.M(r)J2 = Mw~(e) 4~ (J;2K;klltKt)2 y:(e), (10) 
M,Mf 

(11) 

In Eq. (11) Gk2 is identical with the term found 
by Nilsson [formula (35c) in reference 3], where, 
however, the quantum numbers have the subscript 
t, and G~2 has the form 

X [ v (2/; + 1) I (2lt + 1) (1;200 litO> (l;2A;k I ftAt> p (k) 

where 

11 /s for k = 0 

p (k) = 1/s for k = ± 1 . 

- 1/a for k = ±2 
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FIG. 1 

4. SOME SPECIFIC CASES 

One may anticipate that, just as in the calcula
tion of quadrupole moments, the use of the cor
rected representation will be important in those 
cases where a contribution proportional to p2 ap
pears in the expression for the operator in the 
correction term. 

For deformed nuclei, using the data of Mottel
son and Nilsson, 7 we found three M3 transitions. 
These are shown in Figs. 1 and 2 (where we indi
cate for each level, in addition to its energy, the 
values of J, K and the parity). 

In the case of Hf179 and w179, the final state of 
the transition is the same (41 in Nilsson's nota
tion3). In Hf179 the initial level is 71, whereas for 
w179 we have either 71 or 63. In both cases, rt ~ 4,* 
and the corresponding transitions are isomeric: 
the half-life of the initial level corresponding to 
the first transition is 19 sec, while that of the ini
tial level for the second transition is 7 min. For 
both transitions, k = 3, and consequently, accord
ing to the selection rule on k in Eq. (7a), the con
tribution of the term in p2 from the expression for 
~.M( M3) is zero. In the case of Hf179 we found 
Gk3 ( o) = 0.553 X 102 and Gk3 (E) = 0.471 X 102• 

Consequently, as expected, in this case the use of 
the corrected representation does not essentially 
change the expression for the transition probabil
ity. The same conclusions apply to W179 • 

For Ta181 (Fig. 2), although the levels between 
which the M3 transition occurs are different ( 43 
and 25), nevertheless in this case also k = 3, and 
for rt = 4 we found Gk3( o) = 0.174 x 103 and Gk3 

(E)= 0.161 X 103. 
The theoretical half-life computed using the 

values Gk3( E) is approximately 10 sec for the 
( %, %- ) state in Hf179 ; for the ( %. % +) state 

*71 denotes the parameter introduced by Nilsson, 3 · which is 
related to the nuclear deformation 8'. 

w111 45tJ. 

FIG. 2 

in Ta18 t it is 1.9 x 10-4 sec, when we include the 
E2 transition <%. %+>- <%.%+>which we cal
culated previously. 2 For the initial level of the 
M3 transition in w179 we found a value of T of 
the same order as the corresponding quantity for 
the ( %. Y2-) state of Hf179 , i.e., a value which is 
an order of magnitude smaller than the experimen
tal result. The M3 transition in Hf179 is strongly 
suppressed; the experimental value of the suppres
sion factor is F exp ~ 10 -a. The corresponding 
theoretical factor* was Fth = 2 x 10-2 • 

In order to ·examine cases where, in the expres
sion for GM3( €), the selection rules on k allow 
nonzero contributions of the term in p2 (i.e., 
cases where k takes on one of the values -1, 0, 
or 1) we have considered transitions having low 
probability, which are as yet not observed, which 
according to the selection rules might be M3, and 
for which k takes on one of the values enumerated. 

*Our factor F is equal to H-', where H is the factor useo 
by Mottelson and Nilsson! 
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FIG. 3 

In the case of Ta 181 , a transition of this type is the 
one indicated by the dashed line in Fig. 2. How
ever, it turned out in this case that when we sub
stituted the values of the coefficients az,A• the 
term of Gk3 of interest to us (which was differ
ent from zero since k = 1) was small compared 
with the others, and the use of the corrected rep
resentation gave nothing new. 

Analogous results are obtained in the case of 
second forbidden (3 transitions. In deformed nu
clei, not a single case of a second forbidden tran
sition has yet been discovered, so we turned to the 
examination of doubtful cases. Among the nuclei with 
A= 161,7 the transition (%,% +) Tb- (%,% +) Dy, 
with k = 1, might be a unique (3- transition. With 
TJ = 6, we found no significant difference between 
'0a< o) and '0a< E). However, for nuclei with A 
= 165 (cf. Fig. 3) the transition ( %. %-) Er 
- ( 1%, %- ) Ho should be studied using the cor
rected representation, since for 'Y/ = 6 we have 
rl<o) = 0.13 x 102 and Ya(E) = 0.256 x 102• The 
result of this is that the difference resulting from 
using the two representations appears even in the 
log f2T values: 

log f2t: (e) = 15.8, log f2t: (~) = 16,1 .. 

Similarly, in the case of nuclei with A= 177, 
for the (3- transition C%, ~2- ) Lu - ( 1%, ~2- ) Hf7 

the absolute squares of some of the matrix ele
ments (of type 10) are twice as great for the cor
rected as for the original Nilsson representation. 
The reason is that for such a transition k = 0. 

5. CONCLUSION 

Unlike the case of the calculation of the quadru
pole moments of nuclei in the region 150 <A< 188, 
where the use of the corrected Nilsson representa
tion was always necessary, for M3 gamma transi-

tions and second forbidden (3 transitions the use 
of the corrected representation is limited to those 
cases where k = Kf- Ki = -1, 0, or 1, and where 
the coefficients az,A of the wave functions corre
sponding to the initial and final states are suffi
ciently large. Such cases have not yet been discov
ered in deformed nuclei. The reason for the dif
ference in the two calculations is the following. 
Because of the normalization condition l:atA = 1, 
the coefficients of the wave functions do not appear 
in the expression for the main correction term for 
the quadrupole moment; however, in our case the 
normalization condition cannot be used in the main 
correction term, since the coefficients az,A refer 
to different states. Moreover, in the quadrupole 
moment calculations the condition k = 0 is always 
satisfied, which guarantees the appearance of the 
correction term in which we are interested. 

In conclusion, I express my gratitude to Prof. 
S. Titeica for his interest in the work. 
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