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An expression is obtained for the acoustical absorption coefficient in metals in a magnetic 
field which satisfies the condition tm » kT ( 0 is the electron Larmor frequency) for the 
case when the acoustical wavelength is greater than the Larmor radius of the conduction 
electrons, but significantly less than their mean free path. It is found that under such condi
tions the absorption coefficient oscillates as a function of 1/H. The nature of these oscilla
tions is the same as in the de Haas-van Alphen or Shubnikov-de Haas effects. However, the 
oscillations can under certain conditions be gigantic, i.e., they are not a small correction to 
a non-oscillatory part of the acoustical absorption coefficient, but are such that the maximum 
value of the absorption coefficient far exceeds the minimum. 

AT low temperatures, when the mean free path l 
of conduction electrons in a metal is sufficiently 
large, the absorption of sound can be considered 
as the direct absorption of phonons by the electrons 
of the metal. In the absence of a magnetic field the 
major role in the absorption is taken by electrons 
whose velocity v" in the direction of the acoustical 
wave vector I( is equal to the phase velocity of 
sound Wp. 

This fact was pointed out by Akhiezer, Kaganov 
and Lyubarskii. 1 It is easy to satisfy oneself that, 
by considering the conservation laws during 
phonon absorption by the electron 

E (p) + liffix = E (p + liY-), (1) 

where p is the quasi -momentum of the electron, 

An analogous situation also occurs in the 
presence of a magnetic field. We shall consider 
for simplicity the case of a quadratic isotropic 
dispersion law for electrons; the energy of an 
electron in the magnetic field then takes the form 

(4) 

where n is the Landau oscillator quantum number, 
0 = eH/mc is the Larmor frequency, m is the 
effective mass, and pz is the component of mo
mentum in the direction of the magnetic field H 
which is along the z axis. Taking into account the 
conservation of energy and of the z component of 
the quasi-momentum, we have 

E is its energy, w = WpK is the frequency of sound, 
and by expanding E (p + tiK) to terms of first + (pz + 1ix)212m. (1a) 

order in the small quantity K Putting 

E (p + liY-) = E (p) + livx x, 

we obtain the condition 

(2) 

(3) 

which has been mentioned above. Electrons with a 
different velocity component in the direction of the 
vector I( can participate in the absorption only in 
so far as they interact with scatterers. As was 
shown in reference 1, if Kl » 1 their contribution 
to the absorption is of order 1/Kl compared with 
the contribution of electrons whose velocity satis
fies condition (3). 

En• (Pz + lixz) = En• (pz) + livzXz, 

we obtain the condition 

Q (n' - n) + Wp X = VzXz. 

If the magnetic field is so large that 

(2a) 

(5) 

(6) 

(vp is the Fermi velocity), then condition (5) can 
only be satisfied for n = n'. Consequently, the 
quasi-momentum of the electrons which participate 
in the acoustical absorption in a magnetic field is 
equal to 
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p~ = mwP I cos it, (7) 

where () is the angle between the vectors IC and 
H. But wp « VF, therefore, if this angle differs 
sufficiently from a right angle, most of the absorp
tion is due to electrons with small values of pz, 
far smaller than the limiting Fermi momentum PF· 

On the other hand, it is obvious that only elec
trons with energies lying in the interval where the 
Fermi distribution is changing can participate in 
absorption. In order to see more clearly the 
values of pz which correspond to these energy 
values, we turn to the figure. In it are shown the 
parabolae which give the variation of the electron 

energy with Pz for the first few values of n. The 
parabolae intersect the strip of width kT, the 
center of which is at the chemical potential t. The 
width of the strip is smaller than the distance be
tween the parabolae, which corresponds to the 
condition 

(8) 

By projecting onto the abscissa axis the portions 
of the parabolae cut off by the strip, we find that, 
when condition (8) is satisfied where the Fermi 
distribution is changing, intervals of allowed and 
forbidden values of Pz exist. The former inter
vals are indicated in the Figure by thick lines; 
for the corresponding values of Pz the derivative 
with respect to t /kT of the Fermi function is of 
the order of unity. The latter intervals are indi
cated by thin lines on the abscissa axis, and for 
the corresponding values of pz the derivative with 
respect to t /kT of the Fermi function is expo
nentially small. The position of these intervals 
depends on the magnetic field H, because the dis
tance between the parabolae in the figure changes 

with changing H. If the value of H is such that 
the momentum p~ is in the range of allowed 
values of pz, strong acoustical absorption by free 
electrons occurs. For a different value of H the 
momentum p~ can lie in a range of forbidden 
values of pz, and then acoustical absorption occurs 
only because of the scattering of conduction elec
trons, i.e., it is much smaller than in the first 
case. The general situation is thus one in which 
giant oscillations in the acoustical absorption co
efficient occur provided that 

(9) 

We note that the other kinetic coefficients, such 
as the conductivity, also oscillate when (9) is satis
fied. The occurrence of these quantum oscillations 
is also connected with the presence of allowed and 
forbidden intervals of Pz on the Fermi surface. 
However, these oscillations are a small correction 
- usually of order (110/t) 112 - to a major effect, 
and can be calculated using classical theory. 

In our case giant quantum oscillations occur. 
Therefore, when calculating the energy absorbed, 
which we now proceed to do, it is necessary to use 
quantum theory. We neglect the contribution to the 
absorption from transverse electric fields arising 
during deformation of the conductor by the sound. 
(The question of whether it is permissible to ne
glect this has been considered previously.2•3 ) Then 
the energy operator for the interaction of the elec
tron with the sound wave has the form 

V = f (Ue-i"'t + U.,. e'"'t), (10) 

where U = AikUikeix ·r. Here Uik is the tensor 
amplitude of the deformation in the sound wave, 
Aik is the tensor calculated in reference 1, the 
components of which in general can depend on the 
components of the quasi -momentum operator. 
Strictly, the quantity AikUik, being the difference 
between the deformation and electrostatic poten
tials, should itself oscillate in the magnetic field. 
However, it is not difficult to see that the relative 
size of these oscillations is small; therefore they 
will be ignored when considering the giant oscilla
tions in the absorption. 

We consider the scattering of electrons to be 
elastic, which is permissible in most cases. Then 
the energy density absorbed by the electrons in 
unit time is 

X:~~ (Fa- Fa• ) 1iroaa' I (a I U I a') 12 6 (1iroaa' + 1iro). (11) 
aa' 

Here a and a: denote the states of the electron in 



554 GUREVICH, SKOBOV, and FIRSOV 

the field of the scatterers in the presence of the 
external magnetic field, nwaa' = Ea - Ea'• Fa is 
the Fermi function, <a I vI a' > is the matrix ele
ment of the operator U, V0 is the volume of the 
crystal. 

If nw « kT, we can put 

Fa- Fa·= (iJFal iJ~) liO>a•al = (iJFal iJs) JiO>. (12) 

The absorption coefficient r is obtained by di
viding equation (11) by the flux density of acousti
cal energy equal to 

(13) 

where p is the density of the crystal, u0 is the 
amplitude of the oscillations in the sound wave, w 
is the group velocity of sound. In order to obtain 
the zero-order approximation we will neglect the 
general effect of the scatterers on the absorption 
of sound. To do this it suffices to replace the 
indices a and a' in (10) by a and a', respectively, 
which characterize the free electron states in a 
magnetic field. The quantity a is the totality of 
the quantum numbers n, Pz• X, and Sz, where 
nsz /2 is the spin component in the direction of 
the magnetic field, X is the coordinate of the center 
of the Landau oscillator. After this the following 
expression is obtained for the acoustical absorp
tion coefficient: 

n ~ iJF a 2 r = 2 .Lra~ <a I u I a') I 6 (O>Cla.' + 0>). (14) 
Vopuo w a.a.' ., 

For simplicity we now consider the idealized 
case where the components of the tensor Aik are 
essentially constant, the electron spectrum is 
quadratic and isotropic, and the vectors /C and H 
are parallel to one another. Then 

(a' I U I a) =Au, U;k 6s2 s2 ' 6nn' fJxx• {)Pz+ 1i"z.Pz' (15) 

and we have for the coefficient r 

n, Sz 

(16)* 

Here J-t 0 is the Bohr magneton, 

r 0 = m2 1 A;k U;k 12 I 2:rt7i2 pu~xw (17) 

is the acoustical absorption coefficient when H = 0, 
obtained by Akhiezer et al. 1 

After integrating over pz, we obtain 

r - [ _!g_ ~ h-2 [fi.Q (n t lh) + SzfloH- ~ J 
- 0 8kT 4J c 2kT . 

n. Sz 

(18) 

In deriving (18) we have neglected in the argument 

*ch =cosh. 

of the hyperbolic cosine the small quantity 
( p~ )2 /2m, which can only cause an insignificant 
overall shift of the oscillatory picture. 

For nfl « kT the sum over n in (18) can be 
replaced by an integral which is easily evaluated 
and gives 

00 

r = (r 0 I 2) ~ ch2 (y .!_Y~ I 2kT) ;:::::: r 0. 

0 

This expression for r agrees with that obtained 
previously. 3 

When nfl » kT the graph of the function r ( 1/H) 
shows a series of sharp oscillatory maxima, the 
distance between which is 

(19) 

and the height of which is proportional to H, sep
arated by wide, gently sloping minima, the heights 
of which are exponentially small. 

Equation (19) can only describe the behavior of 
the absorption coefficient close to the maxima. In 
order to obtain the value of the absorption coeffi
cient for the minima, and at the same time to esti
mate the limits of applicability of (19), it is neces
sary to obtain the correction to it due to scattering. 
To do this we replace the o function in (16) by the 
expression 

1 v 
"it v2 + (fi.xp2 I m + fi.x~ I 2m- co)2 • 

(20) 

Such a replacement corresponds to the assumption 
that a relaxation time t0 = Yv exists, and yields 
the order of magnitude of the necessary correction. 
In the classical theory (see reference 2 ) when K l 
» 1 a relaxation time exists for most scattering 
mechanisms. The proof that a relaxation time 
exists when Kl » 1 in the quantum region presents 
well-known difficulties, and will be given for some 
cases in a separate paper. 

We consider the case of greatest interest as 
regards possible experiments·: nK 2 /2m « v and w 
« v. The expression (2 0) can then be taken as 
equal to 

(21) 

We replace the o function in (16) by (21) and 
transform to the dimensionless integration vari
able y = Pz ( 2mkT )-112• Then (16) becomes 

r r fi.Q \ d 1 B ~ 1 h_2 (y - An) 
= 0 2kT J y "it 1 + B2y 2 4J 4 c ~ · 

n, sz 
(22) 

Here B = (2kT I m)''•x I v; An = [~- nQ (n + 1l2) 
- SzrtoHJI kT. 

The expression under the integral in (22) con
tains the product of two rapidly-changing functions. 
The maximum of the first is at y = 0 and has a 
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width 1/B; far from the maximum it falls off as 
1/1rBy2• The second function consists of a system 
of peaks, the width of each one being of order 
unity. The position of the peaks changes as the 
magnetic field changes, and the distance between 
them far exceeds their width when tifl/kT » 1. 
Far from the peaks the second function decreases 
exponentially: exp (-I An- y2 1 /2 }. 

We shall treat the case when the distance be
tween the two peaks of the second function closest 
to the maximum of the first function greatly ex
ceeds the width of this maximum. This condition 
is equivalent to the inequality 

B(li D.jkT)"• ~ 1, or xl(li D.JC)'h ~ 1. (23} 

Now, if the value of the magnetic field is such that 
the position of one of the peaks of the second func
tion coincides with the maximum of the first, then 
a giant oscillation occurs. If the width of the maxi
mum of the first function is much smaller than the 
width of the peak of the second, i.e., 

B~xt(kTJC)'iz~ 1, (24} 

the first function can be replaced by a o function. 
Thus, under condition (24}, formula (18} accurately 
describes the shape of the absorption line close to 
a maximum. In the case B ~ 1 the shape of the 
absorption line is different. 

The absorption coefficient has a minimum when 
two closest peaks of the second function are sym
metrically situated with respect to the maximum 
of the first. In this case the first function changes 
slowly in the region of both peaks; therefore the 
peaks themselves can be approximated by o func
tions. The evaluation of the coefficient r at a 
minimum then presents no difficulty, and gives the 
following ratio of the maximum value of the ab
sorption coefficient to the minimum: 

f max If min ~ xl (TiQ n)'I•TiQ I kT ~ I, (25} 

i.e., the oscillations are, in fact, gigantic. The 
estimate (25} retains its significance also when 
B ,..., 1, and gives 

r max I r min ~ (liQ I kT)'Iz. (26} 

The case B « 1 is not of great interest, be
cause it is difficult to satisfy simultaneously in an 
experiment this inequality and (23}. 

Giant oscillations of the acoustical absorption 
coefficient can also occur for an arbitrary shape 
of the Fermi surface and for arbitrary form of the 
deformation potential, provided that the motion of 
electrons with those values of pz which make 
<a I Vz I a> tend to zero is finite. In fact, in this 
case the matrix elements of the deformation poten-

tial (neglecting spin-orbit interaction} are 

<a I u I a) = <na.l A;k Uik Ina) llszSz• Opz-f A<z,Pz' llxx·. (27} 

But if Q > KzVF, then n = n', and we conclude that 
all the previous estimates of the coefficient r at 
a maximum and a minimum remain valid. How
ever, the whole oscillatory picture can be very 
complicated, because there can exist several 
values of Pzm for which <a I Vz I a > is close to 
zero. The number of these values can be deter
mined from the number of different periods on the 
curve of r ( 1/H}. 

As in other well-known cases (see, for 
example, the work of Lifshitz and Kosevich4 }, the 
period of the quantum oscillations in our case is 
related to the area S ( E, pz } cut from the constant 
energy surface by the plane Pz = Pzmo by the 
formula 

!'t.H;;/ = 2ne1i/ cS (e,pzm). (28} 

However, the essential difference is that the pe
riods of the oscillations in our case are determined 
not by the extremal sections, but by the sections in
volving those pz = Pzm which make < a I Vz I a > 
tend to zero. 

Clearly the giant oscillations can be smeared 
out if the specimen has an even relatively weak 
polycrystallinity. If this is to be avoided, the 
angle cp describing the spread in orientation of the 
crystallites which constitute the specimen must 
satisfy the condition 

(29} 

This inequality is satisfied more easily, the 
greater the magnetic field and the smaller the 
value of t;. The giant oscillation effect is, there
fore, most easily observed in semimetals and 
semiconductors with Fermi degeneracy. 

Thus, the classical theory of acoustical ab
sorption in a magnetic field previously developed2•3 

is, generally speaking, only applicable when tifl 
« kT. If the reverse inequality applies, quantum 
theory must be used. 
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