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The effect of elastic deformation on the nuclear magnetic resonance absorption line of Na23 

was studied in rock salt crystals. Components of the tensor relating the elastic deformation 
of the lattice to the gradient of the nuclear electric field were determined and found to be 
S11 = ±2 x 1015 and S44 = =f 0.5 5 x 10 15 cgs esu. 

THE investigation of quadrupole effects in nuclear 
magnetic resonance (NMR) makes it possible to ob
tain an amount of information on defects in solids. 
The defects create additional gradients of the elec
tric field in the crystalline lattice, and the inter
action of the nuclei with these gradients leads to a 
change in the NMR absorption lines. Excitation of 
additional gradients is brought about on the one 
hand by lattice distortions, i.e., by local changes 
in the symmetry of the lattice close to the defect, 
and on the other by the electric fields, which the 
defects create in those cases where they possess 
a charge. 

In order for it to be possible to estimate the 
amount of lattice distortion near the defects by 
the results of NMR studies, a knowledge of the 
connection between the elastic deformations of 
the lattice and the nuclear electric field gradient 
is obviously necessary. This connection can be 
found from NMR experiments in elastically de
formed crystals, and has recently been determined 
by Shulman et al. 1 for In115 in InSb. 

Let us consider what is the effect of elastic de
formation on the NMR absorption line. Elastic 
deformation changes the symmetry of the crystal; 
consequently, the electric field gradient in the 
lattice also changes. In a cubic crystal, such as 
NaCl, the field gradient is equal to zero by virtue 
of the high symmetry; in this case, the NMR line, 
consisting of the central line and satellites, is ob
served as a single "total" absorption line. 

Elastic deformation, lowering the symmetry of 
the cubic crystal, leads to the generation of a field 
gradient which produces a splitting of the absorp
tion line into its components. In principle, for suf
ficiently large elastic deformations in the cubic 
crystal, complete splitting of the components is 
possible. In reality, however, the gradients ob
tained in practically attainable elastic deforma-

tions are very small and lead not to a splitting of 
the components of the line, but only to its broad
ening. 

Shulman et al.,1 introduce the tensor C, which 
relates the nuclear electric field gradient with the 
elastic stresses in the lattice, and investigate its 
properties. It is of great interest to consider the 
tensor S which relates the tensor of the nuclear 
field gradient qJ with the elastic deformations in 
the lattice 6. This tensor can be introduced by 
analogy with the tensor C in the following way: 

(jlp.v = ~ Sv-v,xA Ox), 
x,J. 

(x, /,, p., v=x, y, z) (1) 

For cubic crystals, there are only two independ
ent components of the tensor S, which in the uni
versally adopted notation are written as S11 and 
S44 • These components, as will be shown below, 
can be determined by measurement of the broad
ening of the NMR absorption line in an elastically 
deformed crystal. As objects of investigation in 
the present work, we used specimens of rock salt 
with dimensions of approximately 8 x 8 x 20 mm, 
cut along the [001], [110] and [111] directions. 

The specimens were placed in the coil of an 
NMR oscillator circuit2 and were elastically de
formed by linear compression along the specified 
direction; the axis of compression in this case 
was perpendicular to the direction of the magnetic 
field. The maximum loading on the specimens 
amounted to 66 kg/cm2• For each specimen, the 
derived absorption lines of Na23 were recorded 
for different loadings and angles of rotation of 
the specimen around the compression axis rela
tive to the magnetic field. 

The effect of elastic deformation on the absorp
tion line was weak, as expected. In elastically de
formed specimens, only a reversible decrease in 
the maximum of the derived absorption line was 
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observed, without a noteworthy change in its width, 
within the limits of experimental error. The larg
est decrease amounted to about 20 percent. 

For the determination of the components of the 
tensor S, it is necessary to connect this decrease 
with the frequency shift of the satellites. If we as
sume that the elastic deformation produces only a 
shift of the satellites without change in their shape, 
then, by making use of the property of additivity of 
the second moment of the line, we can write 

ilv2 = llv~ + O.Mv~. 
where D.v~ and D.v2 are the second moments of the 
a,bsorption line in the undeformed and deformed 
specimens, respectively; D.vc is the frequency 
shift of the satellites, and the coefficient 0.6 takes 
into account the relative intensity of the satellites. 

Analysis of the readings showed that the shape 
of the absorption line, both in the initial and in the 
deformed specimens, is very close to Gaussian. 
For the Gaussian shape ov2 = 4D.v2, where ov is 
the breadth of the line measured between the points 
of maximum and minimum of the derivative. Tak
ing this into account, we have 

ov2 = ov~ + 2.41lv~. 
The intensity of the absorption line is proportional 
to Aov2, where A is the maximum of the deriva
tive, and the coefficient of proportionality is deter
mined by the shape of the line. 

Inasmuch as the intensity of the absorption line 
should not change in elastic deformation, and its 
shape remains Gaussian, as has already been noted, 
Aov2 = A0ov~, and A and A0 are the maxima of the 
derivatives of the absorption line in the deformed 
and undeformed crystals, respectively. 

By use of the latter relation, we obtain the final 
formula for the frequency shift of the satellites: 

llvc =±ovoV(A0/A-1)j2.4. (2) 

The dependence of the frequency shift of the sat
ellites D.vc, calculated by this formula, is shown in 
Fig. 1, from a loading for a specimen with the com
pression axis along the [001] direction. As expected, 
the frequency shift is proportional to the loading. 

Figures 2 and 3 show the dependence of D.vc on 
the angle of rotation of the specimen a for a con
stant load. In the first case (Fig. 2) the compres
sion axis is directed along [111], while the angle a 
is the angle be~een the direction of the magnetic 
field and the [110] direction. In the second case, 
(Fig. 3), the compression axis is directed along 
[110], while the angle a is the angle between the 
direction of the magnetic field and the [001] direc-

FIG. 1. Loading dependence 
of the frequency shift of the sat
ellite for a specimen with the 
compression axis along the [001] 
direction. 
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FIG. 2. Dependence of the frequency shift of the satellites 
on the angle between the direction of the magnetic field and the 
[1iO] direction for a specimen with compression axis along 
[111]. Loading is 65 x 106 dynes/em~. 
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FIG. 3. Dependence of the frequency shift of the satellites 
on the angle between the direction of the magnetic field and the 
[001] direction for a specimen with the compression axis along 
[110]. Loading is 61 x 106 dynes/cm2 • 

tion. All the points in Figs. 1-3 represent the 
mean of 4 or 5 independent measurements. 

As is seen from the drawings, for a deforma
tion along [111] there is no angular dependence 
(the same holds for a specimen with the compres
sion axis along [001]), while for a deformation 
along [110], a clear cut angular dependence is 
observed. 

The formula for the frequency shift of the satel
lites can also be obtained by means of perturbation 
theory:3 

Llvc = 3eQ (2m- 1) fPHH/41 (2/- 1) h, 

where I -spin of the nucleus, Q -its quadrupole 
moment, m -magnetic quantum number, cp HH -
component of the nuclear gradient along the direc
tion of the magnetic field. For Na23, I=% and 
the formula for the frequency shift of the satellites 
has the form 

Ll'Vc = ± (eQj2h) fPHH· (3) 

Use of Eqs. (2) and (3) makes it possible to ob
tain the components of the tensor of the gradient 
cp HH in an elastically deformed crystal from the 
experimental results. Further. expressing cpHH 
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in terms of the tensor S and the elastic strain 
tensor o, we can determine the components of S 
in accord with (1). 

It should be noted that inasmuch as for the cubic 
crystals only two independent components of the 
tensor S exist, it suffices for their determination 
to measure the effect of elastic deformation only 
for a specimen with the axis of compression along 
[110] for two different values of a. Nevertheless, 
with the aim of checking the results, we thought it 
desirable to carry out measurements for speci
mens with the compression axis along three dif
ferent directions. 

Let us consider how the component of the tensor 
gradient cpHH can be expressed for each case sepa
rately. It must be kept in mind that the tensor cp 
is a symmetric tensor of second rank and can be 
put into diagonal form if its principal axes are 
known. 

1. Deformation along [001]. For such a defor
mation, the cubic crystal becomes tetragonal, and 
the principal axes of the tensor gradient are the 
cube axes from considerations of symmetry. 

If the x, y, z axes are directed along [100], 
[010], and [001], then the tensor gradient is diago
nal and its components are equal to 

(j)xx = (j)yy = - T (j)zz = {- Su (S12- Su} P, 

where P is the stress and the elastic constants of 
the crystal are denoted by s. 

The direction of the magnetic field lies in the xy 
plane and the component of the tensor gradient along 
this direction is equal to 

( a - angle between the direction of the magnetic 
field and the [010] direction). 

Thus cpHH• and consequently the frequency shift 
of the satellites, in accord with (3}, does not depend 
on a, which, as has been noted above, is the situa
tion actually observed in experiment. 

2. Deformation along [111]. The cubic crystal 
becomes trigonal. The tensor of the gradient along 
the principal axes xyz, which are [112], [flO] and 
[111], is diagonal and its components are: 

q>xx = q>yy = - f-rPzz = - ! S44S44P. 

In this case cpHH = cpxx = cpyy also do not de
pend on a -the angle between the direction of the 
magnetic field and the [1l0] direction. As is seen 
from Fig. 2, this is confirmed by experiment. 

3. Deformation along [110]. The cubic crystal 
becomes orthorhombic with the three axes of sec
ond order [1l0], [001], and [110]. The same axes 
are the principal axes of the tensor gradient. De-

noting them by x, y, z, we have 

(j)yy = - + Sn (sa- S12) P, 

(j)zz = H- Su (su- sl2) + + s44s4~] P. 

It is easy to see that in this case cp HH changes 
as a function of a with a period of 180°: 

q>HH=-.!...[m +(m +2q> )cos2a], 2 Tzz Tzz xx 

where a is the angle between the direction of the 
magnetic field and the [001] direction. Such a char
acter of the dependence of Llvc on a is actually 
observed in experiment (Fig. 3). 

Thus, in all three cases, the experimental re
sults are identical with the predictions of the the
ory. This supplies a basis for assuming that de
crease in the maximum of the derivative of the 
absorption line which was observed by experiment 
is actually connected with the shift in the frequency 
of the satellites brought about by elastic deforma
tion. 

Upon substitution of the expressions obtained 
for cpHH in Eq. (3), the best correspondence with 
experimental results is obtained for S11 = ± 2 x 1015 

1 15 • 't and s44 = 'F 0.5 5 x 0 m cgs esu um s. 
The curves in Figs. 1 - 3 represent the theoret

ical dependences calculated by means of Eq. (3) for 
given values of the components of the tensor S. 

Unfortunately, in view of the smallness of the 
observed effects, the results for S11 and S44 are 
not sufficiently accurate. According to our esti
mates, the random errors in these values amount 
to ± 15 percent. Moreover, it is evident that small 
systematic errors take place connected with the 
fact that the shape of the absorption line is not 
exactly Gaussian and probably changes slightly 
under elastic deformation. 

In conclusion, the author thanks M. I. Kornfel'd 
for discussion of the results, 0. M. Nilov for help 
in the measurements and V. V. Sokolov for carry
ing out mechanical tasks. 
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