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A system of equations describing single particle excitations for excitation energies small 
compared to the chemical potential of the system can be obtained for an arbitrary interac­
tion by investigating the analytic properties of the Green's function, taking pair correlation 
into account. Equations have been obtained which describe the excited states of a system of 
a finite number of particles up to terms of order N-113• It is indicated how the results ob­
tained can be applied to real nuclei. 

1. INTRODUCTION 

THE phenomenological approach is the only rea­
sonable research method that yields quantitative 
results in the case of the many-body problem when 
the interaction between the particles is not small. 
In such an approach the problem is separated into 
two independent parts: 

1) Derivation of the consequences of a theory 
into which experimentally determined constants 
have been introduced such as the effective mass 
of the particles at the Fermi surface, the depth 
of the effective potential well, the constant de­
scribing the Cooper pair correlation, etc. Natu­
rally, we must first obtain for an arbitrary inter­
action the equations describing the behavior of 
the excitations of the system, and we must spe­
cify the precise meaning of the constants intro­
duced. 

2) The evaluation of these constants by some 
approximate method or with the aid of computers. 

When the problem does not involve any small 
parameter, as for example in the case of the nu­
cleus, or in the theory of metals, it is impossible 
to hope to obtain an analytic method of solving 
this second problem. 

In this paper we shall be concerned only with 
the solution of the first problem. However, we 
shall specify the exact meaning of all the constants 
introduced, i.e., we shall indicate the set of per­
turbation theory graphs which corresponds to each 
one of the constants introduced. Unless this is 
done it will be impossible to find an exact approach 
to the solution of the second problem -the problem 

of the evaluation of the constants starting from a 
given interaction between the particles. 

It is well known that systems of Fermi -particles 
can be divided into two classes. The first com­
prises systems in which the Cooper pair correla­
tion is absent. In this case there exists a branch 
of excitations differing from the excitations in a 
Fermi-gas only by their effective mass and their 
effective potential well. For systems of finite 
size this means that there exists a spectrum of 
single particle excitations with energies which 
may be obtained from a solution of the Schrodinger 
equation for a single particle with an effective 
mass and an effective potential (when the interac­
tion between the particles is small this effective 
potential reduces to the self-consistent Thomas­
Fermi potential). An example of such systems 
are the doubly magic and their neighboring nuclei 
-there is no Cooper pair correlation in such 
nuclei. 

To the second class belong systems with pair 
correlation. For such systems, as is shown by a 
study of the analytic properties of the self-energy 
part o(the Green's function, equations may be ob­
tained which are close to those that have been 
studied in the theory of superconductivity._! The 
only condition essential for obtaining these equa­
tions is that the ratio of the pair correlation en­
ergy ..0. to the Fermi limiting energy Eo should 
be small, I.e., that the calculation is carried out 
to terms of order ..0./ Eo· 

In this paper we have obtained to terms ,... N-1/3, 

where N is the number of particles, a system of 
equations which enables us to determine the en-
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ergy of the ground state and the energy of the low­
est single particle excitations if we know the spec­
trum of single particle excitations without pair 
correlation. We consider a system consisting of 
one type of particles, but it is clear from the deri­
vation that for two types of Fermi-particles, for 
example, the neutrons and the protons in a nucleus, 
we would obtain two independent systems of equa­
tions. Only the sets of graphs corresponding to the 
previously listed constants characterizing the prob­
lem become somewhat more complicated. 

Application to real nuclei requires a certain 
development of the results obtained. First of all, 
the description of the single particle excitations 
themselves requires a more serious approach 
than has been adopted until now. 

We shall demonstrate this on the example of a 
doubly magic nucleus in which there is no pair 
correlation. The excited state of Pb208 has an 
energy of 2.6 Mev and spin 3. If the free particle 
model were true the excited state of Pb208 , re­
garded as the appearance of a quasi -particle and 
a hole, could be obtained from the ground states 
of Pb209 and Pb207 • In such an approach an energy 
of 3.5 Mev is obtained in place of 2.6 Mev, and a 
spin which is not equal to 3. We shall refer to 
this difficulty as the "problem of the three leads." 
The solution of this problem requires a reasonable 
introduction of an interaction between excitations. 

Further we must take into account the relation 
between the single particle states and the shape of 
the nucleus, and also the change in the effective 
potential accompanying single particle transitions. 
Problems of this nature have been solved in atomic 
mechanics and their solution within the framework 
of the single particle model of the nucleus presents 
no difficulties in principle. 

The approach proposed in this paper is valid to 
terms of order N-1/3• However, the fluctuating 
part of the neglected terms is of order N-1/3 of 
their value. Therefore, the equations obtained 
enable us to determine the irregular variation of 
the masses and of the first excited states up to 
terms of order N-2/3, and in the case of a nucleus 
this provides quite a sufficient degree of accuracy. 

A further development of the technique proposed 
here will enable us also to determine to terms of 
order N-1/3 the matrix elements for single particle 
transitions corresponding to the emission of y 
quanta and to {3 decay. If comparison with experi­
ment requires this, it will also be possible to ob­
tain a more complicated system of equations which 
takes into account the possibility of pair correla­
tion not only in a state of zero angular momentum, 

but also in a state with angular momentum equal 
to 2. 

It appears to us that the completion of this pro­
gram will enable us to describe quantitatively the 
fluctuations in the mass defects, and will enable 
us to give a theoretical description of the nuclear 
spectroscopy of single particle excitations. 

2. EQUATION FOR THE GREEN'S FUNCTION 

Dyson's equation for the single particle Green's 
function in the coordinate representation* has the 
form 

(iiJjiJt+p2 j2M)G(r, t; r', t')=O(r-r')b(t-t') 

+ ~1:(r, t; r1 , f1)G(r1, t1; r', t')dr1 dt 1 , (1) 

where p is the momentum operator operating on 
the coordinate r, and ~ is the compact part of the 
self-energy defined by the set of graphs of the form 

~2) 

The point of intersection of the lines in this dia­
gram corresponds to the first order in the inter­
action between the particles; the shaded rectangle 
corresponds to the set of all possible interactions 
between two particles. 

We assume that the Hamiltonian for the system 
does not depend explicitly on the time. Then the 
quantities G and ~ will be functions only of t - t'. 
On going over to the Fourier-representation with 
:r:espect to t - t', we obtain 

(e-p2 j2M)G(r, r', e)=o(r-r') 

-;- ~ 1: (r, r 1 , e) G (r1 , r', e) dr1 • (3) 

As is well known, 2 the poles of the function G 
in the complex plane determine the magnitude and 
the damping of the single particle excitations of 
the system. For small excitations of the system 
those values of E play a role which lie near the 
Fermi limiting energy E 0• It is therefore neces­
sary to know the behavior of ~ (r, r 1, E) as 
E- E0. 

3. ANALYTICAL PROPERTIES OF THE SELF­
ENERGY PART 

The character of the function ~ ( E ) depends in 
an essential manner on whether Cooper pairs can 
be formed near the Fermi surface. If formation 
of Cooper pairs is impossible, then integration 

*The coordinate representation enables us to give a simple 
formulation of the boundary conditions in systems of finite size. 
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over the momenta of the three lines of the second 
term in Eq. (2) smears out the poles contained in 
the Green's functions corresponding to these lines. 
With respect to the first term in formula (2), it 
may be easily seen that it is equal to 

~(1\p1, P2, e)=~ np,-qVqop,p, 
q 

(4) 

and does not depend on E. Here np are the occu­
pation numbers, V q is the Fourier component of 
the interaction potential between the particles. The 
form of the function ~ (E) as E- Eo can be ob­
tained by using the methods of the theory of dis­
persion relations. 3 

It may be easily shown that the imaginary part 
of ~ as E- Eo has the form 

From this by utilizing the analytic properties 
of ~ we can show that 

~ = ~0 (r, r1 , e) + 3. (r, r1) I e- e0 I (e- e0 ) i 

7 2:-t:-1? (r, r1) I e- eo l3 1n [ieo/(e- Eo)l. (5) 

where ~ 0 is a function of E which has no singular­
ities as E- Eo (~ 0 has singularities at a distance 
of~ E 0 from the real axis). 

The logarithmic singularity of ~ at E = Eo 
makes nQ contribution to the quantities (~)E=Eo 
and ( 8~/8E )E=Eo which determine in an essential 
manner the behavior of the Green's function near 
the Fermi limit. Therefore, when pair correlation 
is absent, we can replace ~ by (~)E=Eo+ 
( 8~/8E )E=Eo( E- E0 ), and this greatly simplifies 
Eq. (3). 

The situation is different when pair correlation 
is present. In this case ~ contains terms which 
do not involve the previously mentioned integration 
over the momenta of the three lines. Indeed, when 
two of the three lines in (2) form a Cooper pair the 
state of the third line is determined by the conser­
vation laws. For example, if the pair is formed 
with an angular momentum equal to zero, then the 
angular momentum of the third line must be equal 
to the angular momentum of the incident line. As 
a result a pole with respect to E appears in ~ 
which lies on the real axis near E = E 0, and it is 
not possible to expand ~ in a series with respect 
to E- E0• Below we shall outline a method of sep­
arating out from ~ factors which vary slowly near 
E =Eo. 

4. THE INDEPENDENT QUASIPARTICLE 
APPROXIMATION 

When the dimensions of the system are large 
compared to the distance r 0 between the particles,* 
Eq. (3) can be greatly simplified. In an infinite 
homogeneous system ~ and G depend on r 1 - r 2• 

In a finite system, up to terms in r 0/R, where R 
is the size of the system, we can set ~ ( r 1, r 2, E) 

= ~' ( r 1, r 1 - r 2, E). With respect to its first ar­
gument~' (r1, r 1 -r2, E) varies appreciably only 
near the surface of the system and vanishes when 
the second argument becomes much larger than 
the particle wavelength at the Fermi limit. 

We shall be interested in the equation for the 
Green's function in those cases when all the par­
ticipating quasiparticles have energies close to 
the Fermi limit. As will be apparent from subse­
quent discussion this will have the consequence 
that in the expansion. 

G(r, r', e)= (2nt6 ~ G(p, p', e)eipr-ip'r'dpdp' 

only terms with p, p' ~:::; Po will occur. 
We denote by ~R the regular part of ~' which 

does not contain the Cooper singularity. By utiliz­
ing the properties of ~ and G to which we have 
referred we can easily obtain t 

~ ~R(r, I r- r1l, e) G(r1, r', e) dr1 

= (2:rrt3 ~ ~R (r, p, e) G (p, r', e) eiPrdp 

= {~R (r, p0 , e0) + (a~R (r, Po. eo)/aeo) (e- Eo)+ (M/po) 

x(a~R (r, p0 , e0)/ae0) (p2/2M- pg/2M)} G(r, r', e), (6) 

where p is the momentum operator operating on 
the coordinate r, and ~R ( r, p0, E 0 ) is defined by 
the expansion 

~R (r, lr- r'l, e0) = (2nt3 ~~R(r, p, e) eip(r-r'>dp. 

In the second and the third terms in the curly 
brackets of (6) we can again replace to terms of 
order r 0/R the function ~ (r, p0, Eo) which is a 
slowly varying function of r by ~ R (0, Po• Eo) 
= ~ R ( p0, Eo). As a result of these simplifica­
tions, Eq. (3) assumes the form 

*We assume that the distance between the particles, the 
range of the forces, and the wavelength at the Fermi surface 
are quantities of the same order of magnitude. 

tit may be shown• that the expression (1 - a"i.Rjae.)-1 

gives the value of the discontinuity in the momentum distribu­
tion of the particles in a system without pairing, with 
ai.R;ae < o. 
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{e- p2/2Meff- U (r)} [1- (8~1< (p 0 , e0)/8e0)l G(r, r', e) 

= o (r- r') + ~ dr1 ~k (r, r1 , e) G {r, r', e); 

1- iJ:J:.I<(iJeo 
Meff = M 1 + (iJ:J:.I<;iJpo) (M!Po) , 

U (r) _ :J:.R (r, Po, eo)- eoiJ:J:-1</iJeo- (Po/2) (iJ:J:-1</iJpo) (7) 
- 1 - iJ:J:. R!iJeo 

Here G = ( 1 - a~ R I BE 0 ) G is the renormalized 
Green's function; U ( r) represents the effective 
potential well for the quasiparticle, it varies ap­
preciably only near the surface of the system 
within a layer of thickness "' r 0; ~ k (r, r 1, E) is 
the part of the self-energy due to pair correla­
tions. 

Thus, in the absence of pairing we obtain to 
terms of order r 0/R the equation for the renor­
malized Green's function for the independent 
quasiparticles of effective mass Meff and with 
the effective potential U ( r). Formula (7) repre­
sents the basis for the independent quasiparticle 
method in systems with a strong interaction. 

Equation (7) for ~ k = 0 determines the Green's 
function for the Schrodinger equation: 

i81J!j8t = H'I', H = p2f2Metf + U (r). (8) 

Therefore, the energies of the single particle exci­
tations of the system may be found in this approxi­
mation as the eigenvalues of (8) 

(9) 

In the case of a nucleus, when the quantity r 0/R 
...... A -1/3 is not very small, the independent quasi­
particle approximation may turn out to be insuffi­
cient for some problems, and may have to be cor­
rected, for example, by means of taking into ac­
count the dependence of El~R/ElE 0 and El~R/Elp0 
on r, and this will lead to the operator U ( r) 
which depends on the nature of the excitation of 
the system. In our subsequent discussion we shall 
assume that the operator U ( r) includes the spin­
orbit interaction. 

For the solution of equation (7) for ~ k ¢ 0, it 
is useful to expand G in terms of the eigenfunc­
tions <fJA. of Eq. (9): 

G(r, r', e)= :L;Gn·(e)cp;o.(r)cp:·(r'). 

As a result of substituting into (7) we obtain 

(e- e;o.) Gn· =On·+ L; ( cp1, 1 1 _ ;;I<;iJeo I cpA,) GA,I.'' (10) 
A, 

In the absence of pairing, (10) yields 

Gh· = oAI:/(e- e1, + ial e- e1.,l (e- eA, )), 

where EA.o is the highest filled state. 

For the determination of the imaginary part of 
the denominator we have utilized expression (5). 

5. THE SELF ENERGY PART OF l:k ASSOCI­
ATED WITH PAm CORRELATION 

We give a graphic representation of the term 
of ~ which corresponds to the formation of a 
Cooper pair which we denote by a wavy line: 

'·=~ (11) 

We note that a graph of the form 

(12) 
8 

does not appear in ~ k• since the state of the sys­
tem corresponding to the point B is identical with 
the initial state (one pair has been added to and 
subtracted from the system). Therefore, a graph 
of the form (12) is a noncompact one, and will be 
obtained by a repetition of the graph of formula 
.(11). 

Both here and subsequently we assume that in 
our system formation of pairs of only one type is 
possible. By a similar method we can also obtain 
equations for several types of pairs. Moreover, 
we do not consider the excited states of the pairs, 
which, as may be easily seen, give corrections of 
the order of various powers of the small param­
eter D../E0, where D.. is the pairirrg energy.* We 
can also leave out of consideration graphs of the 
form 

.. 
since integration over the momenta of the inter­
mediate lines will smear out,the pole due to the 
pairing, and the graph under consideration may 
be regarded as being included in the regular part 
of l: R· The analytic expression corresponding to 
the graph of formula (11) may be obtained in a 
manner analogous to the way in which this is done 
in the theory of dispersion relations. 

If the state of the particle at the mstant A is 
determined by the conservation laws, then the 
graph of formula (11) is a graph of pole type and, 

*Since the maximum momentum of the center of mass of the 
pair is determined by the relation• km .. p0~/€0, the volume in 
phase space of the possible excited states is .. (p0~/€0)3 • The 
graph of the form (12), which will appear in 2k if one of the 
pairs is in an excited state, will tum out to be small, of-order 
<Me:.)'. 
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consequently, 

where ~A. denotes the shaded vertex which de­
pends on the state A. of the incident particle, and 
E A is the change in the energy of the system re­
sulting from the transition to the state A. 

EA can be represented as the change in the 
energy of the system due to the addition of two 
particles (equal to 2M) followed by a subtraction 
of the energy of the hole corresponding to the line 
going in the opposite direction in the graph of for­
mula (11): 

where -A. denotes the state of the hole appearing 
as a result of the formation of a Cooper pair. 
Thus, we obtain 

In the more general case a pair can be produced 

It may be easily seen that the equation for ~ 
is of the form 

4= (17) 

where the shaded rectangle denotes the set r of 
the interaction graphs which are not joined by two 
vertical straight lines, i.e., it is the same quantity 
which appears in the Bethe-Salpeter equation. 
However, instead of the exact G and G* we must 
in the following discussion substitute G and Gti, 
i.e., graphs of the form (16) are absent in one of 
the lines. Indeed, the expression which appears 
after the shaded rectangle may be represented in 
the following form (for the sake of simplification 
we do not draw the graphs corresponding to 1: R) 

R 

i.e., the outgoing pair is at the right-hand edge of 
as the result of the appearance of a hole in an arbi- the graph. The graph 
trary state. Then we obtain from (11) 

(~k)A1., = ~ tln·l:!.):1.J(e + e,_,- 2ft). (14) 
).' 

We shall see later that expression (13) is valid 
only for the potential U ( r ) in the form of a rect­
angular well, while in other cases expression (14) 
should be used. 

Equation (11) can also be written in the sym­
bolic form 

(15) 

Gt includes graphs contained in 1: R· but, as has 
been shown earlier, does not include graphs of the 
form 

In the representation of the CfJA. the quantity Gti' is 
equal to 

Thus, Go is the renormalized Green's function for 
the hole in the absence of pairing. 

Expression (15) in the representation of the CfJA. 
leads to formula (14). 

6. EQUATION FOR THE VERTEX PART 

The equation for the vertex part ~ is of a form 
reminiscent of the Bethe-Salpeter equation, but 
with a very essential modification. 

should not be taken into account, as it is identical 
with the one mentioned previously, since the state 
A is the same for both graphs. Thus, the equation 
for ~ has the form 

tJ. = fGtJ.G~. (17') 

The equation for ~ * is obtained from the graph 

•• • ~ = _Q___ -r·c;.·c . (18) 

Equation (18) has in the coordinate representa­
tion the form 

tJ.* (xb x2) = ~ r· (xl' x2; Xa, x4) F (xa. x4) dxa dx4, (19) 

where F denotes the expression 

F(x11 x2) = G~tJ. * G 

= ~ G~ (x1, x3) tJ.* (xa, X4) G (x1, x2) dxadx.; 

x is the set of coordinates r, t. These equations 
are greatly simplified when the dimensions of the 
system are much larger than the distance between 
the particles. In an infinite homogeneous system 
the expressions ~(x1 , x2 ) and F(x1, x2 ) depend 



SINGLE PARTICLE EXCITATIONS AND SUPERFLUIDITY 483 

only on (r1 -r2 and t 1 -t2). Therefore, in a finite 
system, on going over to the Fourier components 
with respect to the difference variables, we obtain 

f1 (xh x2) = (2n)-4 ~ f1 (xi> p, c) eiP(r,-r,)ei<(f,-t,)dp dE, 

where ~ (x1, p, E) is a slowly varying function of 
the first argument which does not depend on the 
angles specifying the orientation of the vector p. 
Similarly, we can introduce the quantity F ( x1, p, E) 
which has the same properties. To quantities of 
order ro/R the interaction r (x1, x2; Xa, x4) de­
pends only on three differences of the quantities 
Xt, X2, X3, X4, With r appreciably differing from 
zero when all the differences I ri- rk I ~ r 0 and 
(ti -tk) :::: li/E0• 

As will be shown later, the quantity F ( x, p, E) 
has a sharp maximum at E = c0• By utilizing the 
previously mentioned properties of r and F, and 
by going over to the Fourier representation with 
respect to x1- x2 and x3- x4, we obtain from (19) 

~· (x, p, c) 

= (2nt4 ~ r· (x- x', p, c, p', c0) F (x, p', c') dx' dp' de' 

We shall be interested in the value of ~ * for 
p =Po and E = E0• By denoting 

f1* (x) = f1* ( t:, Po. Eo) 

and by utilizing the approximate lack of dependence 
of ~* (x, p, E) and F (x, p, E) on the angles spe­
cifying the orientation of the vector p, we obtain 

f1* (x) = (2nt4 ~ y' (p') F (x, p', c') dp' de', 

'( (p') = 4~ ~ r· (x - x'' Po. Eo, p', co) dx' dwp·, (20) 

where the integral over dwp' I 41T denotes averag­
ing over the angles specifying the orientation of 
the vector p'. 

The dependence on x of J F ( x, p', E' ) dE' is 
determined by the inhomogeneity of the system, 
or by the effect of external fields. It may be eas­
ily shown by considering a homogeneous system 
in an external field which varies appreciably over 
a distance "'l » r 0 that the dependence of 
F (x, p, E) on x is determined by particles with 
momenta lying close to Po in the range op "' n/l. 
Because of this the difference 

~ {F (x, p', c') - F (0, p', c')} de' 

has a sharp maximum at p' ~ p0• Therefore, we 
obtain from (20) 

f1* (x) - f1* (0) = y~ {F (x, x) - F (0, 0)}, 

where Yt = y*(p0 ). 

(21) 

In formula (21) we have returned to the coordi­
nate representation for F: 

F (x, x') = (2n) -4 ~ F (x, p, c) e'P(r-r')+i<(l-l')dp de. 

As x - x' this expression diverges logarithmic­
ally in the integration over p- p0• Naturally, ex­
pression (21) does not contain any divergences. 
We shall utilize in place of (21) the simpler ex­
pression 

f1* (x) = y~ F (x, x), (21') 

in which the logarithmic divergence has been elim­
inated by cutting off the integration over p: p1 < p 
< P2; Pt• P2 "' Po· 

7. THE CONNECTION BETWEEN THE EQUA­
TIONS FOR THE GREEN'S FUNCTION AND 
FOR THE VERTEX PART WITH THE METHOD 
OF TWO GREEN'S FUNCTIONS 

We write in symbolic form the system of equa­
tions (7), (15), (17), and (18) which we have ob-
tained: 

f1 = ai'Gf1G~, (22) 

where G is the renormalized Green's function: 

G = aG, a = (I - o!.Rioc0)-1• (23) 

The factor a can be eliminated from (22) by in­
troducing renormalized values of ~ and r: 

r = ai'. (24) 

We denote 

F = - iG~f1*CJ, T = iGf1G~. (25) 

We obtain from (22) - (25) 

o-;1a = 1 + iKJ, 

E = rF. 3.' = r'F. (26) 

Equations (26) represent generalized systems of 
equations for the two Green's functions G and F 
obtained by Gor'kov1 for weak and o-type inter­
action between particles.* 

The only assumption used in deriving the sys­
tem (26) is the smallness of the ratio ~/E0 • A 
significant advantage of (26) is the natural intro­
duction of F by means of formulas (25), while the 
definition of the second Green's function in Gor'­
kov' s method 

F (x1 , x2 ) = (<D0 (N), T'Y (x1 ) 1J' (x2) <D0 (N + 2)), (27) 

*The method of two Green's functions was first used by 
Belyaev6 in studying Bose systems. 
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which does not coincide with (25) leads to errors 
in the case of finite systems, where the addition of 
two particles can significantly alter the properties 
of the system. The same remark also applies to 
other methods of taking pair correlation into ac­
count developed in papers on superconductivity, 7 

in which systems with N- 2, N, N + 2 particles 
are assumed to be the same. A particularly str£k­
ing example of the breakdown of validity of such 
an assumption is provided by nuclei near the magic 
shells, when the addition of two particles signifies 
the transition into the next shell and is associated 
with a significant change in the properties of the 
system. 

By utilizing the properties of ~ and F noted 
in Sec. 6 we obtain 

(iiJ I ar: :-H) G (x, x') = () (x- x') + i3.. (x) F (x, x'}, 

(WI ar: + H'- 2f.-l) F (x, x') = - i~· (x) 'i'f(x, x'), 

li'(x)=\r'(p')F(x, p', 8')_dp'd8'/(2n)4 • (28) 

The second of equations (28) is a definition of the 
function F: H* denotes the complex conjugate of 
the Hamiltonian* H, which arose from the defini­
tion of the Green's function for a hole as corre­
sponding to time reversal. 

8. THE SYSTEM OF EQUATIONS. APPLICATIONS 
TO THE NUCLEUS 

The system (28) has been utilized for the study 
of the properties of nonspherical nuclei, and in par­
ticular for the calculation of the moments of iner­
tia.8 When Eqs. (28) are applied to near-magic nu­
clei it is necessary to take into account the fact 
that the addition or subtraction of one particle may 
significantly alter the properties of such nuclei. 
Therefore, one must make a distinction between 
the Green's function for the particle and the 
Green's function for the hole. 

In (28) this will affect the expressions for 11-: 
for T > 0 we shall have 211- = 211- + = E0( N + 2) 
- E0( N), for T < 0 we have 211- = 2p- = E0( N) 
-Eo( N- 2), where E0( N) is the energy of the 
ground state of the system of N particles. We 
show this by means of a graph. Let T > 0 corre­
spond to arrows pointing to the right, and T < 0 
correspond to arrows pointing to the left. Then 
the graph of formula (11) represents ~k = ~k for 
T > 0. For T < 0 we obtain in place of (11) 

*In the case of the Hamiltonian (8) H "' H* the imaginary 
properties of the Hamiltonian arise, for example, as a result 
of the introduction of a magnetic field. If the external field 
depends on t, then all the quantities in (28) will be functions 
not only of 'T, but also of t. 

(11') 

The energy of the initial state is W0 = E0( N)- E, 

the energy of the state A is equal to W A 
= E0( N- 2) + EA_. By representing ~k in a form 
analogous to ~ k we obtain 

l:h = I !\~ 12/(W A - W0) = I!\~ [2/(8 + 81,- 2p.-). (13') 

Thus, Eqs. (28) have a different form for T > 0 and 
T < 0. Therefore, it is useful to introduce the 
Green's functions for the particle and for the hole 
separately: 

o (r, r', -r) =a+ (r, r', -r), 

a {r, r'' -r) =a- (r, r', -r), -r<O. 

We define F+ and F- in an analogous manner. 

(29) 

On integrating equations (28) over an infinitesi­
mal interval of T near T = 0, we obtain 

a+ (r, r', 0)- a- (r, r', 0) =- il'J (r -r'), 

P(r, r', 0) =F-(r, r', 0). (30) 

On the basis of (30) we obtain from the last of 
equations (28) 

Li~(r) = Li- (r) = !\, (31) 

and we obtain for G + and a- the equations 

( w1a. - H) a± = ii\F±, 

(W!a-r + w- 2p.='=) p± = -ii\*a±; 

(32) 

with the conditions (30). It is clear that the system 
(32) admits the transformation 

and it is therefore possible to assume that ~ ( 0) 
is real. 

On going over to the representation of the 'PA.• 
and on assuming that ~ ( r) does not depend on r 
and is real (for a large system ~ ( r), and also 
U (r), depend on r only at the surface of the sys­
tem., therefore the assumption that ~ is constant 
introduces an error of the order of N-1/3 ), we 
obtain 

(ia!a-r- 81,) a~ (-r) = ii\F~ (•). 

(iiJ/iJ-r: +81-- 2p.±) Ft (-r) =- ii\a~ (-r); 

Ll = Y1 .2_ F~ (0) = Y1 ~ F;:- (0). (33) 
I. 

We shall seek the solution of the system (33) in 
the form 



SINGLE PARTICLE EXCITATIONS AND SUPERFLUIDITY 485 

F:; = ~m exp (- iE~:>.'t). 

(34) 

From the conditions (30) we obtain 

On substituting (34) into the system (33) we 
obtain 

(E~, - e,) A~ = -11C~, (E~, - e,) B{ = 11D)., 

AV 

(35) 

(36) 

The condition that Eqs. (36) should have a solu­
tion gives the possible values of ErA. and E~A.: 

Ej,=:t+±V112 +(e;.-~t+)2, 

(37) 

Thus, v assumes two values corresponding to the 
two signs of the square root. 

We shall show that for E1A. we should take the 
upper, and for E2A. the lower sign of the square 
root when the system is in the ground state. An 
exception to this rule are the states* A.0 and - "-o• 
occupied by an unpaired particle and hole in an odd 
nucleus. This case will be considered separately. 

We note first that the branches of the square 
roots chosen above correspond to the values of 
E1A. and E2A. which reduce to EA. when I EA. - J.1. I 
»D.. The system (33) contains extraneous solu­
tions since in deriving these conditions we did not 
impose the condition that the nucleus is in the low­
est state. In order to derive the consequences of 
this condition we write an expansion of the Green's 
function similar to Lehmann's expansion in quan­
tum field theory. 2 From the definition of the 
Green's function we have 

G {x, x') = - i (<1>0 (N), T'¥ (x) 'JI+ (x') <1>0 (N)), 

where 4>0( N) is the exact wavefunction for the 
ground state of the s.:v.stem of N particles, T de­
notes the chronological product, and 'll(x) and 
-.iF+(x) are the Heisenberg operators for the anni­
hilation and creation of particles. In the CfJA. rep­
resentation on assuming, as we have done earlier, 
that GA.A.' = oA.A.'GA_, we obtain 

*The symbol -.\ denotes the state which together with ,\ 
can form a Cooper pair. ·For a nucleus the state -A in our 
approximation differs from the state A only by the sign of the 
component of the angular momentum. 

's 

- Wo (N)l -r}, 

G). ('t) = i ~ \ (a;.)so \2 exp {i[W. (N- I) - Wo (N)l 't}, 

(38) 

where (aVso = (4">s(N+1), a~4>o(N)) and (aA.)so 
= (4">s(N-1), aA.4>0(N)); W0(N), Ws(N) are the 
energies of the ground and of the excited states of 
a system of N particles. 

The sums over s have sharp maxima corre­
sponding to the appearance and disappearance of 
quasiparticles of energies ErA. and EfA.. On com­
paring (34) and (38) we obtain 

E~:>.. = Wsv (N + I) - Wo (N) > Wo (N + I) 
- Wo (N) = r-t, 

E~:>. = W o (N) - Wsv (N - I) < Wo (N) 

- W0 (N- I) =ft~, 

whence, on comparing with (37), we obtain 

(39) 

± V 112 + (e;>, - ft )2 < 11.~ -ft-. (40) 

For even nuclei due to pairing we have JJ.{ > J.1. +, 
JJ.i < J.l.-. The empirical values of the chemical po­
tentials always satisfy these inequalities. There­
fore, for even nuclei only those solutions of (33) 
are possible which correspond to the values 

En= ft+ +V112 + (e;>, -f'-+) 2 , 

£21. = ft-- V 112 + (e;>,- f.l-) 2 (41) 

and only one term remains in each of the sums (34). 
With respect to the odd nuclei, it may be easily 

seen that for them the inequalities (40) admit both 
values of the square root. However, since all the 
quantities are altered but little when one particle 
is added to an even nucleus, it must be assumed 
that for all the values of A. with the exception of 
the state A.0, occupied by the added particle, and 
of the state - A.0 (which differs from A.0 by a 
change in the sign of the component of the angular 
momentum), occupied by the hole, there exists 
only the solution corresponding to the values E1A. 
and E2A., given by (41). 

Thus, for all the values of A. in even nuclei, 
and for the values of A. with the exception of A.o 
and - A.o in odd nuclei, the sums (34) contain 
only one term each, and the coefficients AA., BA_, 
CA_, DA. can be easily obtained from (36) and (35). 



486 A. B. MIGDAL 

We introduce the notation 

V 6.2 +(e.,._- f1+)2 =E).., 

V 112 +(e.,._- rt-) 2 = E;,, 

Then we obtain from (36) 

A.,._= (e~ +E~)I(E.,._ +E~ +r-+ -r--), 
B.,._= (E.,._-e.,._)I(E), +E~ +r-+-p.-), 

(42) 

c.,._ =- 6. (E.,._- e1.) I (E.,._+ E~ + r-+- ~t-) (E~- e~). (43) 

To these expressions we must add the equation 
for .0.: 

1 = -·h~{(E)..-e).)I(E.,._ +E~+r-+-r--)(E;,-e~)} 
"A 

(44) 
and the relation 

N = ~ (<1>0 (N), a~a~.<l>o (N)) = - w-(Q) =~B.,._, (45) 
A ).. 

which together with the obvious condition 

r-+ (N) = r-- (N + 2) (46) 

enables us to determine the change in the chemical 
potential and in the pairing energy as the shell is 
gradually filled, if we know the levels EA. for the 
single particle problem without pairing, and if the 
constant y 1 has been determined. 

The formulas which we have given enable us to 
determine the irregular variations in the nuclear 
masses which are superimposed on the regular 
variation described by the Weizsacker formula. 
The quantity BA. determines the number of par­
ticles in the state A.. 

It may be easily shown that the quantity y 1 in 
formula (44) is of order y 1 "' Eo /N. For magic 
nuclei and for neighboring nuclei the quantity 
11 + -11- is equal to the energy gap between the 
shells, and is of order EoN-1/3• Therefore, the 
denominator of CA. contains the quantity EoN-1/3 

» .0. and, as may be easily shown, Eq. (44) has 
only the zero solution .0. = 0. Thus, the absence 
of pair correlation for magic and for neighboring 
nuclei appears as a natural consequence of this 
theory. 

We now obtain the solution of the system (36) 
for the values A.0, - A.0, which determine the state 
of the unpaired particle and hole in an odd nucleus. 
The ground state of an odd nucleus should be re­
garded as a slightly deformed state of the preced­
ing even nucleus with an added particle in the state 
A.o and a hole in the state - A.0• We shall see that 
there exists a solution of (36) which admits such 
an interpretation. 

If the state A.0 is occupied by a particle, then 
evidently 

- iG~, (0) = (<l>o (N), a;, a.,._, <1> 0 (N)) = l. 

From these two relations and the conditions 
(35) we obtain 

Ai,= At= 0, Bt, +Bt = 1, Ci., = ct = 0, 

D}, +m. = o. (47) 

and this, together with (36), yields in the notation 
of (42) 

(48) 

For A. = - A.o we have G:A.o = F:A.o = 0, - iG~A.o = 1. 
In analogy with (48) we obtain 

A~, .• = (E.,._, + e_~.,) I 2E.,._,, A:.1-, = (E1-, - e~..) I 2£),, 

c~~.. = - c:A, = M2EA, . (49) 

It follows from (47) and (49) that in the sum 

11 = ·h~,c~ 
AV 

the values A. = A.0 and A. = - A.0 are missing in the 
case of an odd nucleus, and this leads to an appre­
ciable decrease in .0. in the case of odd nuclei. 8 

The theory also allows us to determine the value 
of A.0• For this we must write down the energy 
of the system taking pairing into account, and A.0 

is determined by the requirement that the energy 
of the odd nucleus is a minimum. The state A.0 

determined in this manner, generally speaking, 
should not coincide with the state obtained from 
the independent particle model. 

A similar procedure must be carried out to de­
termine the energy of the excited states of even 
and odd nuclei; the values of A.1 and A.2 for the 
hole and for the particle describing the excita­
tion must be determined, and formulas similar 
to (48) and (49) must be obtained. In the expres­
sion for .0. = y1~ ~CA. the values of A.1, - A.1; A.2, 

- A.2, will be missing, and this will lead to a sig­
nificant decrease in .0. for the excited states of 
nonspherical nuclei. 8 
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