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The change in the adiabatic invariant during passage of a charged particle through a magnetic 
inhomogeneity is calculated by a previously developed method. 1•2 The results significantly 
differ from those obtained with·help of a model Hamiltonian. 2-4 

THE method of calculating the change in the adia
batic invariants, developed earlier, 1•2 makes it 
possible to calculate the change in the adiabatic 
invariant of a particle moving in an inhomogene
ous magnetic field. Unlike other investigations 
of this topic, 2- 4 we shall not use for the magnetic 
field a model in which the curvature of the force 
lines is ignored, and shall carry out a rigorous 
analysis of the problem. 

We confine ourselves to an axially-symmetrical 
magnetic field. The particle energy can be repre
sented in the form 

1 2 1 (M e ) E = 2m (p~ + P z) + 2m r -- c A'~' · (1) 

Here M = r ( mv cp + eAcp I c) is the conserved azi
muthal moment of the particle. Following refer
ence 2, we shall solve first the quantum-mechanical 
problem. The Schrodinger equation for this case 
has the form 

1 ( M e \2 v = 21ii --,- - --c- Acp! · (2) 

As is well known, the motion of a particle in a 
strong magnetic field consists of fast Larmor ro
tation about the force line and motion along the 
force line. The equation of the force line to which 
the particle is "tied," as can be seen from (1), 
has the form 

M = (ejc)rA(j). (3) 

The square of the element of length in the new 
coordinates, as can be seen from Fig. 1, is 

(4) 

Here hs = 1 - x/R and hcp = r = p ( s ) + z ( s ) x are 
Lam.§ coefficients, R ( s) is the radius of curvature 
of the force line; the dots signify differentiations 
with respect to s. The equation of the force line 
is written in parametric form 

r = p(s), z=z(s). 

We consider the magnetic field to be sufficiently 
strong, meaning that the parameter of rL/R is 
small ( rL is the Larmor radius). Since x ~ rL 
during the entire time of motion, we can expand 
the Laplacian and the potential energy in (2) in 
powers of s/R. In all the expansions we shall 
retain the terms of the first two nonvanishing 
orders. 

We assume that the motion of the particle takes 
place in a region where there are no currents. In 
this region the magnetic field satisfies the equation 

iJHx iJ as-- ax(hsHs) = 0. (5) 

On the force line x = 0 this equation yields 

aH ;ax= HI R. (6) 

In connection with particle motion of such nature, 
we shall find it convenient to replace the cylindri
cal coordinates r, z with new coordinates s, x, 
where s is the length along the force line (3), and 
x is the shortest distance to the force line. Obvi
ously, these coordinates are orthogonal, and can 
be introduced uniquely for all x that satisfy the 
conditions x < Rmin• where Rmin is the least 
radius of curvature of the force line. Using (6) and the expression for Hs 
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1 a 
Hs =- r ax (rA"'), 

we obtain an expansion for rAcp: 

r A"'= (eM I e)- Hp (s) [ x +-+ x2 (1 I R + i I p) J . 

(7) under the assumption that there are no turning 
points. The case when turning points are present 
(reflection from a magnetic mirror) is considered 

(8) analogously and leads to the same results. 

Substituting (8) into expression (2) for V, we 
obtain 

V=Vo+V1, V0 =+mw2 (s)x 2 , (9) 

V1=V0x(11R-zjp), (10) 

where w is the Larmor frequency, equal to eH/mc. 
We make another change of variables 

~ = x (mw (s) I 1i)'f,, s = s. (11) 

The Lame coefficient for the new variables are 

h~=(1ilmw)'l•, h5 =l-(1ilmw)'I·~IR, h'f 

= p (s) + (1i 1 mw)'l• ~i. (12) 

With the accuracy employed here, the Laplace op
erator in the variables ; , s is found to be .6. = L0 

+ L1, where 

(13) 

L =I moo)'/, (j_- ~) ~ + (_!:____)''• ~ .,r;;J ~ (-p ~) 
1 \ 1i p R a~ mw, R p as .,r;;J as , 

Transforming (9) and (10) to the new variables, 
we get 

Vo = + 1iw~2 , V1 = (1i I mw)''· ~(I I R- i I p) Vo. (15) 

ZEROTH APPROXIMATION 

The zeroth-approximation equation, as can be 
seen from (13) and (15), has the form 

{nw 1 a• 2) n• Yw a ( P a ) } 
2 \- a~• + ~ -2m -P- as \ .,rw as 'll = E'IJ. (16) 

Separating the variables we obtain a quasi-classi
cal solution of Eq. (16), normalized to a a-function 
energy 

'Pne = Cnk:n• )\xp {i~kneds}(~~)"'Bn(~), 
k~E = (2m I 1i2) [E - ( n + +) 1iw (s) J . (17) 

Here Sn ( ; ) are the eigenfunctions of an oscillator 
with a single frequency. The wave function normal
ized to the unit flux differs from (17) by the factor 
( 27Tfi) 1/2. 

For the sake of being definite, we have written 
out the solution of the "longitudinal" part of (16) 

SCATTERING MATRIX IN THE FffiST APPROXI
MATION 

Unlike the model considered earlier2 for the 
magnetic field, the perturbing Hamiltonian (14), 
(15) contains odd powers of the transverse coordi
nate ; and of the derivative a;a;. In this connec
tion, the perturbation in the case of the magnetic 
field permits transitions to neighboring levels. 
Since the probabilities of transitions to more re
mote levels contain additional exponentially small 
factors, we confine ourselves to the calculation 
of the near-diagonal component of the scattering 
matrix. 

In the calculation of the matrix elements, the 
singularities of the perturbing Hamiltonian in 
the complex plane come into play; these singu
larities coincide2 with the zeros and the poles of 
the functions w ( s ) and R ( s ) . [ It is easy to 
verify that the remaining functions of s contained 
in (14) are expressed in terms of R(s)]. We as
sume that the main contribution to the matrix 
elements is made by the saddle point, which co
incides with the zero s 0 of the function w ( s ) . 

After calculating the matrix elements under 
this assumption, it is easy to see that the main 
contribution in the powers of rL/R is made by 
the second term in (14). For the near-diagonal 
elements of the scattering matrix we have 

- ((11\1
'' v v'i. /n (··~,(I} ) Sn, 11-1 -- C T 1 -R ( ) -. -,-, l. 2 exp t - ds , 

So [ w (so)) • J' v II 

S,.,, ,.,+1 ; 

(, m )'1' • .~, ... I + 1 ( e ) 
= -C* T R (:~) [w ~s~) {~ V T exp - i ~ :II ds . 

(18) 

We have introduced here 

c = 2-'1•r (L) e;7,,8 

4 ' 

v 11 = [ 2 ( E- Iw )/m] 112 is the longitudinal velocity 
of the particle, and v is the total velocity. 

The contribution of the next perturbation-theory 
approximation to the scattering matrix is estimated 
in complete analogy with the procedure used in ref
erence 2. It is found to be small in rL/R compared 
with the terms included. 

Knowing the scattering matrix, we can calculate 
the change in the adiabatic invariant by going to the 
classical limit. 1•2 We note beforehand that the wave 
functions and scattering matrix have been deter
mined only accurate to an arbitrary phase multi-
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plier. In (17) and (18) this arbitrariness manifests 
itself in the absence of a lower limit in the integral. 
At the same time, the final result -the change in 
the adiabatic invariant- should be unequivocal. To 
eliminate this arbitrariness, a lower limit must be 
chosen for the integral in (18). 

We proceed in the following fashion. We assume 
that prior to passing through the magnetic inhomo
geneity ( s - - oo) the particle moved in a homoge
neous magnetic field. The trajectory of the particle 
was characterized in this case by a certain initial 
phase shift. The phase shifts of the wave functions 
must be chosen such that a wave packet built up of 
these functions should describe, as s-- oo, a 
classical particle with specified phase shift. It is 
easy to verify that this corresponds to the follow
ing choice of lower limit for the integral in (18): 

s s 

~ ~ ds = ~ (~ - w_ ids _L 0'- s --1- •h • v V -, I - ' 'f-
11 -co II v II ' v II 

(19) 

Here 1/J_, vjj, and w_ are the phase, longitudinal 
velocity, and Larmor frequency as s-- oo .s 

A calculation of the adiabatic invariant2 leads 
to the following result: 

I" -- /_ { ( E )';, ( v . '-'• [ . ~s, ( w w_ \ 
-- = Re C -.- -.-2-) exp t - ---=- , ds 

I IwoRo woR0 -co v 11 v 11 I 

(20) 

We see that the change in the adiabatic invari
ant I, due to the motion of a particle in a magnetic 
field, differs from the results obtained by using 
the model Hamiltonian. This difference consists 
in the absence of the factor 2 from the exponent 
in (20) and the presence of a factor of order 
(rL/R)114 befqre the exponent. Thus, the results 
differ appreciably (in order of magnitude) from 
the results previously obtained, 2 and the use of 
the model Hamiltonian to obtain quantitative data 
on the motion of a charged particle in a magnetic 
field3•4 must be regarded as incorrect. 
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